Run MPI On Grid'5000: Difference between revisions

From Grid5000
Jump to navigation Jump to search
(Give some information about using mpich and mvapich)
 
(57 intermediate revisions by 11 users not shown)
Line 1: Line 1:
{{Maintainer|Nicolas Niclausse}}
{{Maintainer|Jeremie Gaidamour}}
{{Portal|User}}
{{Portal|User}}
{{Portal|Tutorial}}
{{Portal|Tutorial}}
Line 12: Line 10:
For instance, you should know that standard MPI processes live in their own memory space and communicate with other processes by calling library routines to send and receive messages. For a comprehensive tutorials on MPI, see the [http://www.idris.fr/formations/mpi/ IDRIS course on MPI]. There are several freely-available implementations of MPI, including Open MPI, MPICH2, MPICH, LAM, etc. In this practical session, we focus on the [http://www.open-mpi.org Open MPI] implementation.
For instance, you should know that standard MPI processes live in their own memory space and communicate with other processes by calling library routines to send and receive messages. For a comprehensive tutorials on MPI, see the [http://www.idris.fr/formations/mpi/ IDRIS course on MPI]. There are several freely-available implementations of MPI, including Open MPI, MPICH2, MPICH, LAM, etc. In this practical session, we focus on the [http://www.open-mpi.org Open MPI] implementation.


Before following this tutorial you should already have some basic knowledge of OAR (see the [[Getting Started]] tutorial) . For the second part of this tutorial, you should also know the basics about OARGRID (see the [[Advanced OAR]] tutorial) and Kadeploy (see the [[Getting Started]] tutorial).
Before following this tutorial you should already have some basic knowledge of OAR (see the [[Getting Started]] tutorial). For the second part of this tutorial, you should also know the basics about OARGRID (see the [[Advanced OAR]] tutorial).


== Running MPI on Grid'5000 ==
== Running MPI on Grid'5000 ==
When attempting to run MPI on Grid'5000 you will face a number of challenges, ranging from classical setup problems for MPI software to problems specific to Grid'5000. This practical session aims at driving you through the most common use cases, which are:
When attempting to run MPI on Grid'5000 you will face a number of challenges, ranging from classical setup problems for MPI software to problems specific to Grid'5000. This practical session aims at driving you through the most common use cases, which are:
* Setting up and starting Open MPI on a default environment using <code class='command'>oarsh</code>.
* Setting up and starting Open MPI on a default environment.
* Setting up and starting Open MPI on a default environment using the <code class='command'>allow_classic_ssh</code> option.
* Setting up and starting Open MPI to use high performance interconnect.
* Setting up and starting Open MPI to use high performance interconnect.
* Setting up and starting latest Open MPI library version.
* Setting up and starting Open MPI to run on several sites using <code class='command'>oargridsub</code>.
* Setting up and starting Open MPI to run on several sites using <code class='command'>oargridsub</code>.
* Setting up and starting your own Open MPI library inside a Kadeploy image.


= Using Open MPI on a default environment =
= Using Open MPI on a default environment =


The default Grid'5000 environment provides Open MPI 2.0.2 (see <code class='command'>ompi_info</code>).
The default Grid'5000 environment provides Open MPI 4.1.0 (see <code class='command'>ompi_info</code>).


== Creating a sample MPI program ==
== Creating a sample MPI program ==


For the purposes of this tutorial, we create a simple MPI program where the MPI process of rank 0 broadcasts an integer (42) to all the other processes. Then, each process prints its rank, the total number of processes and the value he received from the process 0.
For the purposes of this tutorial, we create a simple MPI program where the MPI process of rank 0 broadcasts an integer (42) to all the other processes. Then, each process prints its rank, the total number of processes and the value it received from the process 0.


In your home directory, create a file <code class="file">~/mpi/tp.c</code> and copy the source code:
In your home directory, create a file <code class="file">~/mpi/tp.c</code> and copy the source code:


{{Term|location=frontend|cmd=<code class="command">mkdir</code> ~/mpi}}
{{Term|location=frontend|cmd=<code class="command">mkdir</code> ~/mpi<br>
{{Term|location=frontend|cmd=<code class="command">vi</code> ~/mpi/tp.c}}
<code class="command">vi</code> ~/mpi/tp.c}}
<syntaxhighlight lang="c">#include <stdio.h>
<syntaxhighlight lang="c">#include <stdio.h>
#include <mpi.h>
#include <mpi.h>
Line 42: Line 39:
       char hostname[257];
       char hostname[257];
       int size, rank;
       int size, rank;
      int i, pid;
       int bcast_value = 1;
       int bcast_value = 1;


Line 65: Line 61:
{{Term|location=frontend|cmd=<code class="command">mpicc</code> ~/mpi/tp.c -o ~/mpi/tp}}
{{Term|location=frontend|cmd=<code class="command">mpicc</code> ~/mpi/tp.c -o ~/mpi/tp}}


== Setting up and starting Open MPI on a default environment using <code class=command>oarsh</code> ==
== Setting up and starting Open MPI on a default environment ==


Submit a job:
Submit a job:
{{Term|location=frontend|cmd=<code class="command">oarsub</code> -I -l nodes=3}}
{{Term|location=frontend|cmd=<code class="command">oarsub</code> -I -l nodes=3}}


<code class=command>oarsh</code> is the remote shell connector of the OAR batch scheduler. It is a wrapper around the <code class=command>ssh</code> command that handles the configuration of the SSH environment. You can connect to the reserved nodes using <code class=command>oarsh</code> from the submission frontal of the cluster or from any node. As Open MPI defaults to using <code class=command>ssh</code> for remote startup of processes, you need to add the option <code class=command>--mca orte_rsh_agent "oarsh"</code> to your <code class=command>mpirun</code> command line. Open MPI will then use <code class=command>oarsh</code> in place of <code class=command>ssh</code>.
OAR provides the $OAR_NODEFILE file, containing the list of nodes of the job (one line per CPU core). You can use it to launch your parallel job:
 
{{Term|location=node|cmd=<code class="command">mpirun</code> --mca orte_rsh_agent "oarsh" -machinefile $OAR_NODEFILE ~/mpi/tp}}
 
You can also set an environment variable (usually in your .bashrc):
{{Term|location=bashrc|cmd=<code class="command">export</code> OMPI_MCA_orte_rsh_agent=oarsh}}
{{Term|location=node|cmd=<code class="command">mpirun</code> -machinefile $OAR_NODEFILE ~/mpi/tp}}
{{Term|location=node|cmd=<code class="command">mpirun</code> -machinefile $OAR_NODEFILE ~/mpi/tp}}
Open MPI also provides a configuration file for <code class=command>--mca</code> parameters. In your home directory, create a file as <code class="file">~/.openmpi/mca-params.conf</code>
<pre class="brush: bash">
orte_rsh_agent=oarsh
filem_rsh_agent=oarcp
</pre>


You should have something like:
You should have something like:
Line 99: Line 84:


You may have (lot's of) warning messages if Open MPI cannot take advantage of any high performance hardware. At this point of the tutorial, this is not important as we will learn how to select clusters with high performance interconnect in greater details below. Error messages might look like this:
You may have (lot's of) warning messages if Open MPI cannot take advantage of any high performance hardware. At this point of the tutorial, this is not important as we will learn how to select clusters with high performance interconnect in greater details below. Error messages might look like this:
[[2616,1],2]: A high-performance Open MPI point-to-point messaging module
was unable to find any relevant network interfaces:
Module: OpenFabrics (openib)
  Host: helios-8.sophia.grid5000.fr
Another transport will be used instead, although this may result in
lower performance.
--------------------------------------------------------------------------
warning:regcache incompatible with malloc
warning:regcache incompatible with malloc
warning:regcache incompatible with malloc


or like this:
  [1637577186.512697] [taurus-10:2765 :0]      rdmacm_cm.c:638  UCX  ERROR rdma_create_event_channel failed: No such device
  [griffon-80.nancy.grid5000.fr:04866] mca: base: component_find: unable to open /usr/lib/openmpi/lib/openmpi/mca_mtl_mx: perhaps a missing symbol, or compiled for a different version of Open MPI? (ignored)
  [1637577186.512752] [taurus-10:2765 :0]    ucp_worker.c:1432 UCX  ERROR failed to open CM on component rdmacm with status Input/output error
  [griffon-80.nancy.grid5000.fr:04866] mca: base: component_find: unable to open /usr/lib/openmpi/lib/openmpi/mca_btl_mx: perhaps a missing symbol, or compiled for a different version of Open MPI? (ignored)
  [taurus-10.lyon.grid5000.fr:02765] ../../../../../../ompi/mca/pml/ucx/pml_ucx.c:273 Error: Failed to create UCP worker
  [griffon-80.nancy.grid5000.fr:04865] mca: base: component_find: unable to open /usr/lib/openmpi/lib/openmpi/mca_mtl_mx: perhaps a missing symbol, or compiled for a different version of Open MPI? (ignored)
[griffon-80.nancy.grid5000.fr:04867] mca: base: component_find: unable to open /usr/lib/openmpi/lib/openmpi/mca_mtl_mx: perhaps a missing symbol, or compiled for a different version of Open MPI? (ignored)
  ...


You could use [[FAQ#How_to_use_MPI_in_Grid5000.3F]] to avoid this warnings.
To tell OpenMPI not try to use high performance hardware and avoid those warnings message, use the following options:


==Setting up and starting Open MPI on a default environment using allow_classic_ssh==
{{Term|location=node|cmd=<code class="command"> mpirun --mca pml ^ucx -machinefile $OAR_NODEFILE  $HOME/mpi_programm</code>}}


If you prefer using <code class="command">ssh</code> as a connector instead of <code class="command">oarsh</code>, submit a job with the <code>allow_classic_ssh</code> type:
{{Note|text=In case you submitted a job that does not reserve entire nodes (all CPU cores of all nodes), you have to use <code class=command>oarsh</code> as MPI remote shell connector. To do so with Open MPI, you can add <code class=command>--mca orte_rsh_agent "oarsh"</code> to your <code class=command>mpirun</code> command line. Open MPI will then use <code class=command>oarsh</code> in place of <code class=command>ssh</code>.
{{Term|location=frontend|cmd=<code class="command">oarsub</code> -I -t allow_classic_ssh -l nodes=3}}


Launch your parallel job:
{{Term|location=node|cmd=<code class="command">mpirun</code> --mca orte_rsh_agent "oarsh" -machinefile $OAR_NODEFILE ~/mpi/tp}}
 
You can also set an environment variable (usually in your .bashrc):
{{Term|location=bashrc|cmd=<code class="command">export</code> OMPI_MCA_orte_rsh_agent=oarsh}}
{{Term|location=node|cmd=<code class="command">mpirun</code> -machinefile $OAR_NODEFILE ~/mpi/tp}}
{{Term|location=node|cmd=<code class="command">mpirun</code> -machinefile $OAR_NODEFILE ~/mpi/tp}}


{{Note|text=Using <code>allow_classic_ssh</code> option avoids OAR resources confinement mechanism with '''cpuset''' to restrict the jobs on assigned resources. Therefore, <code>allow_classic_ssh</code> cannot be used with jobs sharing nodes between users (i.e. for reservations at the core level).}}
Open MPI also provides a configuration file for <code class=command>--mca</code> parameters. In your home directory, create a file as <code class="file">~/.openmpi/mca-params.conf</code>
<pre class="brush: bash">
orte_rsh_agent=oarsh
filem_rsh_agent=oarcp
</pre>
}}


== Setting up and starting Open MPI to use high performance interconnect ==
== Setting up and starting Open MPI to use high performance interconnect ==
By default, Open MPI tries to use any high performance interconnect (e.g. Infiniband, Omni-Path) it can find. Options are available to either select or disable an interconnect:


MCA parameters ('''--mca''') can be used to select the drivers that are used at run-time by Open MPI. To learn more about the MCA parameters, see also:
Open MPI provides several alternative ''compononents'' to use High Performance Interconnect hardware (such as Infiniband or Omni-Path).
 
MCA parameters ('''--mca''') can be used to select the component that are used at run-time by OpenMPI. To learn more about the MCA parameters, see also:
* [https://www.open-mpi.org/faq/?category=tuning#mca-params The Open MPI FAQ about tuning parameters]
* [https://www.open-mpi.org/faq/?category=tuning#mca-params The Open MPI FAQ about tuning parameters]
* [http://www.open-mpi.org/faq/?category=tcp#tcp-selection How do I tell Open MPI which IP interfaces / networks to use?]
* [http://www.open-mpi.org/faq/?category=tcp#tcp-selection How do I tell Open MPI which IP interfaces / networks to use?]
* [http://www.open-mpi.org/faq/?category=openfabrics The Open MPI documentation] about [https://en.wikipedia.org/wiki/OpenFabrics_Alliance OpenFabrics] (ie: [https://en.wikipedia.org/wiki/InfiniBand Infiniband])
* [http://www.open-mpi.org/faq/?category=openfabrics The Open MPI documentation] about [https://en.wikipedia.org/wiki/OpenFabrics_Alliance OpenFabrics] (ie: [https://en.wikipedia.org/wiki/InfiniBand Infiniband])
* [https://www.open-mpi.org/faq/?category=opa The Open MPI documention] about Omni-path. [https://www.intel.com/content/www/us/en/support/articles/000016242/network-and-i-o/fabric-products.html Intel documentation about Omni-Path tools].
Open MPI packaged in Grid'5000 debian11 includes [https://openucx.org/ ''ucx''], [https://ofiwg.github.io/libfabric/ ''ofi''] and ''openib'' components to make use of Infiniband network, and [https://github.com/cornelisnetworks/opa-psm2 ''psm2''] and ''ofi'' to make use of Omnipath network.
If you want some of these components, you can for example use '''--mca pml ^ucx --mca mtl ^psm2,ofi --mca btl ^ofi,openib'''. This disables all high performance components mentionned above and will force Open MPI to use its TCP backend.
=== Infiniband network ===


To learn more about specific Omni-Path tools, refer to [https://www.intel.com/content/www/us/en/support/articles/000016242/network-and-i-o/fabric-products.html this page].
By default, OpenMPI tries to use Infiniband high performance interconnect using the [https://openucx.org/ UCX] component. When Infiniband network is available, it will provide best results in most of cases (UCX even uses multiple interfaces at a time when available).


If you want to disable native support for high performance networks, use '''--mca btl self,sm,tcp --mca mtl ^psm2'''. The first part disables the '''openib''' backend, and the second part disables the '''psm2''' backend (used by Omni-Path). This will switch to TCP backend of Open MPI.
=== Omni-Path network ===


Nodes with Infiniband or Omni-Path interfaces also provide an '''IP over Infiniband''' interface (these interfaces are named '''ibX'''), and can still be used by the TCP backend. To also disable their use, use '''--mca btl_tcp_if_exclude ib0,lo''' or select a specific interface with '''--mca btl_tcp_if_include eno2'''. You will ensure that 'regular' Ethernet interface is used.
For Open MPI to work with Omni-Path network hardware, PSM2 component must be used. It is recommended to explicitly disable other components (otherwise, OpenMPI will try to load other components which may produce error messages or provide lower performance):


We will be using [http://pkgs.fedoraproject.org/repo/pkgs/NetPIPE/NetPIPE-3.7.1.tar.gz/5f720541387be065afdefc81d438b712/NetPIPE-3.7.1.tar.gz NetPIPE] to check the performances of high performance interconnects.
{{Term|location=node|cmd=<code class="command">mpirun</code> -machinefile $OAR_NODEFILE -mca mtl psm2 -mca pml ^ucx,ofi -mca btl ^ofi,openib  ~/mpi/tp}}


To download, extract and compile NetPIPE, do:
=== IP over Infiniband or Omni-Path ===
{{Term|location=frontend|cmd=<code class="command">cd</code> ~/mpi}}
{{Term|location=frontend|cmd=<code class="command">wget</code> http://pkgs.fedoraproject.org/repo/pkgs/NetPIPE/NetPIPE-3.7.1.tar.gz/5f720541387be065afdefc81d438b712/NetPIPE-3.7.1.tar.gz }}
{{Term|location=frontend|cmd=<code class="command">tar</code> -xf NetPIPE-3.7.1.tar.gz}}
{{Term|location=frontend|cmd=<code class="command">cd</code> NetPIPE-3.7.1}}
{{Term|location=frontend|cmd=<code class="command">make</code> mpi}}


As NetPipe only works between two MPI processes, reserve only one core in two distinct nodes. If your reservation includes more resources, you will have to create a MPI machinefile file with only two entries, such as follow:
Nodes with Infiniband or Omni-Path network interfaces also provide an '''IP over Infiniband''' interface (these interfaces are named '''ibX'''). The TCP backend of Open MPI will try to use them by default.
 
You can explicitely select interfaces used by the TCP backend using for instance '''--mca btl_tcp_if_exclude ib0,lo''' (to avoid using IP over Infiniband and local interfaces) or '''--mca btl_tcp_if_include eno2''' (to force using the 'regular' Ethernet interface eno2).
 
 
== Benckmarking ==
 
We will be using [http://mvapich.cse.ohio-state.edu/benchmarks/ OSU micro benchmark] to check the performances of high performance interconnects.
 
To download, extract and compile our benchmark, do:
 
{{Term|location=frontend|cmd=<code class="command">cd</code> ~/mpi<br>
<code class="command">wget</code> https://mvapich.cse.ohio-state.edu/download/mvapich/osu-micro-benchmarks-5.8.tgz<br>
<code class="command">tar</code> xf osu-micro-benchmarks-5.8.tgz<br>
<code class="command">cd</code> osu-micro-benchmarks-5.8/<br>
<code class="command">./configure </code> CC=$(which mpicc) CXX=$(which mpicxx)<br>
<code class="command">make</code>}}
 
As we will benchmark two MPI processes, reserve only one core in two distinct nodes.  
{{Term|location=frontend|cmd=<code class="command">oarsub</code> -I -l nodes=2}}
{{Term|location=frontend|cmd=<code class="command">oarsub</code> -I -l nodes=2}}
{{Term|location=node|cmd=<code class="command">uniq $OAR_NODEFILE &#124; head -n 2 > /tmp/machinefile</code>}}


Infiniband hardware is available on several sites. For example, you will find clusters with Infiniband interconnect in Rennes (20G), Nancy (20G) and Grenoble (20G & 40G).
To start the network benchmark, use:
{{Term|location=node|cmd=<code class="command">mpirun</code>mpirun -machinefile $OAR_NODEFILE -npernode 1 ~/mpi/osu-micro-benchmarks-5.8/mpi/pt2pt/osu_latency
}}
 
The option `-npernode 1` tells to only spawn one process on each node, as the benchmark requires only two processes to communicate.
 
You can then try to compare performance of various network hardware available on Grid'5000. See for instance Network section of [[Hardware#Network_interface_models|Hardware page]].
 
OAR can select nodes according to properties related to network performance. For example:
* To reserve one core of two distinct nodes with a 56Gbps InfiniBand interconnect:
{{Term|location=frontend|cmd=<code class="command">oarsub</code> -I -l /nodes=2/core=1  -p "ib_rate=56"}}
* To reserve one core of two distinct nodes with a 100Gbps Omni-Path interconnect:
{{Term|location=frontend|cmd=<code class="command">oarsub</code> -I -l /nodes=2/core=1 -p "opa_rate=100"}}
 
== Use a newer Open MPI version using modules ==
 
Newer Open MPI versions are available as module. To list available versions, use this command.
 
{{Term|location=frontend|cmd=<code class="command">module av openmpi/</code>}}
<pre>
[...]
openmpi/4.1.4_gcc-10.4.0
[...]
</pre>
 
This will load chosen Open MPI to execution your environment:
 
{{Term|location=frontend|cmd=<code class="command">module load openmpi/4.1.4_gcc-10.4.0</code><br>
<code class="command">mpirun --version</code>}}
 
You must recompile simple MPI example on the frontend with this new version.
 
{{Term|location=frontend|cmd=<code class="command">mpicc ~/mpi/tp.c -o ~/mpi/tp</code>}}


To reserve one core of two distinct nodes with:
From your job, you must ensure the same Open MPI version is used on every nodes:
* a 20G InfiniBand interconnect (DDR, Double Data Rate):
{{Term|location=frontend|cmd=<code class="command">oarsub</code> -I -l /nodes=2/core=1  -p "ib='DDR'"}}
* a 40G InfiniBand interconnect (QDR, Quad Data Rate):
{{Term|location=frontend|cmd=<code class="command">oarsub</code> -I -l /nodes=2/core=1 -p "ib='QDR'"}}


To check if the support for InfiniBand is available in Open MPI, run:
{{Term|location=frontend|cmd=<code class="command">oarsub -I -l nodes=3</code>}}
{{Term|location=node|cmd=<code class="command">ompi_info</code> &#124; grep openib}}
you should see something like this:
                MCA btl: openib (MCA v2.1.0, API v3.0.0, Component v2.0.2)


To start the network benchmark, use:
{{Term|location=node|cmd=<code class="command">module load openmpi/4.1.4_gcc-10.4.0</code><br>
{{Term|location=node|cmd=<code class="command">cd</code> ~/mpi/NetPIPE-3.7.1}}
<code class="command">$(which mpirun) -machinefile $OAR_NODEFILE ~/mpi/tp</code>}}
{{Term|location=node|cmd=<code class="command">mpirun</code> --mca  orte_rsh_agent "oarsh" -machinefile /tmp/machinefile NPmpi}}
 
Note that <code>$(which mpirun)</code> command is used in this last step to ensure mpirun from the module environment is used.
 
== Installing Open MPI in a conda environment ==
 
Here's an example of installing Open MPI in a conda environment optimized with ucx to use the cluster's high-bandwidth and low-latency.
 
We work on Grenoble site
 
UCX exposes a set of abstract communication primitives that utilize the best of available hardware resources and offloads. These include RDMA (InfiniBand and RoCE), TCP, GPUs, shared memory, and network atomic operations.


Without high performance interconnect, results looks like this:
; Installation
    0:        1 bytes  4080 times -->      0.31 Mbps in      24.40 usec   
    1:        2 bytes  4097 times -->      0.63 Mbps in      24.36 usec   
    ...
    122: 8388608 bytes      3 times -->    896.14 Mbps in  71417.13 usec
    123: 8388611 bytes      3 times -->    896.17 Mbps in  71414.83 usec
The latency is given by the last column for a 1 byte message; the maximum throughput is given by the last line (896.17 Mbps in that case).


With Infiniband 40G (QDR), you should have much better performance that using Ethernet:
* Install OpenMPI, ucx, and GCC from '''conda-forge''' channel in the <code><env_name></code> environment
  0:      1 bytes  30716 times -->     4.53 Mbps in      1.68 usec
{{Term|location=fgrenoble|cmd=<code class="command">conda create -y -n <env_name></code><br>
  1:      2 bytes  59389 times -->     9.10 Mbps in      1.68 usec
<code class="command">conda activate <env_name></code><br>
...
<code class="command">conda install -c conda-forge gcc_linux-64 openmpi ucx</code>}}
121: 8388605 bytes    17 times -->  25829.13 Mbps in    2477.82 usec
Note: do not forget to create a dedicated environment before.
122: 8388608 bytes    20 times --> 25841.35 Mbps in    2476.65 usec
123: 8388611 bytes    20 times -->  25823.40 Mbps in    2478.37 usec


Less than 2 ms of latency and almost 26 Gbit/s of bandwitdh !
; Test installation via NetPIPE


== Specificity of uva and uvb cluster on Sophia ==
* Install NetPIPE to test latency and network throughput (NetPIPE not available as conda package)
{{Term|location=fgrenoble|cmd=<code class="command">cd $HOME ; mkdir SRC && cd SRC</code><br>
<code class="command">wget https://src.fedoraproject.org/lookaside/pkgs/NetPIPE/NetPIPE-3.7.2.tar.gz/653071f785404bb68f8aaeff89fb1f33/NetPIPE-3.7.2.tar.gz</code><br>
<code class="command">tar zvxf NetPIPE-3.7.2.tar.gz</code><br>
<code class="command">cd NetPIPE-3.7.2/ && make mpi</code>}}


uva and uvb are connected to a 40G QDR Infiniband network. But this network uses a partition key : <code>PKEY</code>
* Reserve 2 cores on 2 separate nodes and enter into interactive session (ex: cluster dahu in Grenoble) :
{{Term|location=fgrenoble|cmd=<code class="command">oarsub -I -p dahu -l /nodes=2/core=1</code>}}


As a result, if you want to use mpi with the infiniband network, you have to specify the partition key (which is 8100) with the following option <code>--mca btl_openib_pkey  "0x8100"</code>
Note: choose an appropriate cluster with OminPath or InfiniBand Network connection to compare performance between two nodes using or not ucx driver. See [https://www.grid5000.fr/w/Hardware Grid'5000 Hardware Documentation].


= More advanced use cases=
* On node dahu-X : Load conda, activate your conda environment, modify $PATH
{{Term|location=dahu|cmd=<code class="command">module load conda</code><br>
<code class="command">conda activate <env_name></code><br>
<code class="command">export PATH=~/SRC/NetPIPE-3.7.2:$PATH</code>}}


== Running MPI on several sites at once ==
* Run MPI without ucx (use standard network):   
{{Term|location=dahu|cmd=<code class="command">mpirun -np 2 --machinefile $OAR_NODEFILE --prefix $CONDA_PREFIX --mca plm_rsh_agent oarsh  NPmpi</code>}}
<pre>
0: dahu-3
1: dahu-30
Now starting the main loop
  0:      1 bytes  6400 times -->      0.54 Mbps in      14.21 usec
  1:      2 bytes  7035 times -->      1.07 Mbps in      14.20 usec
  2:      3 bytes  7043 times -->      1.61 Mbps in      14.22 usec
...
116: 4194304 bytes    12 times -->  8207.76 Mbps in    3898.75 usec
117: 4194307 bytes    12 times -->  8161.45 Mbps in    3920.87 usec
...
</pre>
   
* Run MPI with ucx (use rapid network):
{{Term|location=dahu|cmd=<code class="command">mpirun -np 2 --machinefile $OAR_NODEFILE --prefix $CONDA_PREFIX --mca plm_rsh_agent oarsh --mca pml ucx --mca osc ucx NPmpi</code>}}
<pre>
0: dahu-3
1: dahu-30
Now starting the main loop
  0:      1 bytes  19082 times -->      1.69 Mbps in      4.50 usec
  1:      2 bytes  22201 times -->      3.08 Mbps in      4.95 usec
  2:      3 bytes  20212 times -->      4.46 Mbps in      5.13 usec
...
116: 4194304 bytes    46 times -->  30015.10 Mbps in    1066.13 usec
117: 4194307 bytes    46 times -->  30023.66 Mbps in    1065.83 usec
...
</pre>


In this section, we are going to execute a MPI process over several Grid'5000 sites. In this example we will use the following sites: Rennes, Sophia and Grenoble, using oargrid for making the reservation (see the [https://www.grid5000.fr/mediawiki/index.php/Advanced_OAR#Multi-site_jobs_with_OARGrid Advanced OAR] tutorial for more information).


{{Warning|text=Open MPI tries to figure out the best network interface to use at run time. However, selected networks are not always "production" Grid'5000 network which is routed between sites. In addition, only TCP implementation will work between sites, as high performance networks are only available from the inside of a site. To ensure correct network is selected, add the option '''--mca opal_net_private_ipv4 "192.168.0.0/16" --mca btl_tcp_if_exclude ib0,lo --mca btl self,sm,tcp''' to mpirun}}
= Using other MPI implementations =


{{Warning|text=By default, Open MPI may use only the short name of the nodes specified into the nodesfile; but to join grid5000 nodes that are located on different sites, we must use the FQDN names. For Open Mpi to correctly use FQDN names of the nodes, you must add the following option to mpirun: '''--mca orte_keep_fqdn_hostnames t'''}}
Both MPICH and MVAPICH are available as modules on Grid5000.
Both have the same architecture when it comes to managing networks: they can both be compiled with UCX *or* with OFI, and therefore there are two versions of the modules available:
  - mpich/{version...}-ofi, which should be used on OmniPath interconnects.
  - mpich/{version...}-ucx, which should be used for infiniband interconnects.


The MPI program must be available on each site you want to use. From the frontend of one site, copy the mpi/ directory to the two other sites. You can do that with '''rsync'''. Suppose that you are connected in Sophia and that you want to copy Sophia's mpi/ directoy to Grenoble and Rennes.
When in doubt, prefer the OFI version as it offers better performances when using the TCP modules.
The MPI implementation should automatically select the "best" network available and use it, but if at some point you want to explicitly set which transport layer to use, there are ways to do so for both OFI and UCX.


{{Term|location=fsophia|cmd=<code class="command">rsync</code> -avz ~/mpi/ nancy.grid5000.fr:mpi/}}
== Choosing the transport layer with OFI ==
{{Term|location=fsophia|cmd=<code class="command">rsync</code> -avz ~/mpi/ grenoble.grid5000.fr:mpi/}}
(you can also add the ''--delete'' option to remove extraneous files from the mpi directory of Nancy and Grenoble).


Reserve nodes in each site from any frontend with oargridsub (you can also add options to reserve nodes from specific clusters if you want to):
OFI uses libfabric to handles the underlying networks, and you can use a couple of variables to filter/select the transport layer to use.
{{Term|location=frontend|cmd=<code class="command">oargridsub</code> -w 02:00:00 <code class="replace">nancy</code>:rdef="nodes=2",<code class="replace">grenoble</code>:rdef="nodes=2",<code class="replace">sophia</code>:rdef="nodes=2" > oargrid.out}}
The first one is <code class='command'>FI_PROVIDER</code>.
Get the oargrid Id and Job key from the output of oargridsub:
{{Term|location=frontend|cmd=<code class="command">export</code> OAR_JOB_KEY_FILE=$(grep "SSH KEY" oargrid.out &#124; cut -f2 -d: &#124; tr -d " ")}}
{{Term|location=frontend|cmd=<code class="command">export</code> OARGRID_JOB_ID=$(grep "Grid reservation id" oargrid.out &#124; cut -f2 -d=)}}
Get the node list using oargridstat and copy the list to the first node:
{{Term|location=frontend|cmd=<code class="command">oargridstat</code> -w -l $OARGRID_JOB_ID  &#124; grep -v ^$ > ~/gridnodes}}
{{Term|location=frontend|cmd=<code class="command">oarcp</code> ~/gridnodes $(head -1 ~/gridnodes):}}
Connect to the first node:
{{Term|location=frontend|cmd=<code class="command">oarsh</code> $(head -1 ~/gridnodes)}}
And run your MPI application:
{{Term|location=node|cmd=<code class="command">cd</code> ~/mpi/}}
{{Term|location=node|cmd=<code class="command">mpirun</code> -machinefile ~/gridnodes --mca orte_rsh_agent "oarsh" --mca opal_net_private_ipv4 "192.168.0.0/16" --mca btl_tcp_if_exclude ib0,lo --mca btl self,sm,tcp --mca orte_keep_fqdn_hostnames t tp}}


<!--
The command <code class='command'>fi_info -l</code> should provide enough information about the fabrics available.
==Compilation of Open MPI ==
Typically, you can set it to <code class='command'>psm2</code> to force using OmniPath, or <code class='command'>tcp</code> to force communication to go through the tcp module (either over IP or over OmniPath depending on the interface used.


If you want to use a custom version of Open MPI, you can compile it in your home directory.
You can select the interface(s) to use for the tcp module by setting the <code class='command'>FI_TCP_IFACE</code> variable.
Make an interactive reservation and compile Open MPI from a node. This prevents overloading the site frontend:
{{Term|location=frontend|cmd=<code class="command">oarsub</code> -I}}


Get Open MPI from the [http://www.open-mpi.org/software/ompi/ official website]:
== Choosing the transport layer with UCX ==
{{Term|location=node|cmd=cd /tmp/}}
{{Term|location=frontend|cmd=<code class="command">wget</code> http://www.open-mpi.org/software/ompi/v1.10/downloads/openmpi-1.10.2.tar.bz2}}
{{Term|location=node|cmd=tar -xf openmpi-1.10.2.tar.bz2}}
{{Term|location=node|cmd=cd openmpi-1.10.2}}


Run ''configure'':
Similarly to OFI, you can use an environment variable to tell UCX to use a specific transport layer: <code class='command'>UCX_TLS</code>.
{{Term|location=node|cmd=<code class="command">./configure</code> --prefix=$HOME/openmpi/  --with-memory-manager=none}}


Compile:
The command <code class='command'>ucx_info -d</code> to get information about the available transport layer.
{{Term|location=node|cmd=<code class="command">make</code> -j8}}


Install it on your home directory (in $HOME/openmpi/ )
You can select the interface(s) to use by setting the <code class='command'>UCX_NET_DEVICES</code> variable.
{{Term|location=node|cmd=<code class="command">make install</code>}}


To use your version of Open MPI, use <code class='command'>$HOME/openmpi/bin/mpicc</code> and <code class='command'>$HOME/openmpi/bin/mpirun</code> or add the following to your configuration:
= More advanced use cases=
{{Term|location=node|cmd=<code class="command">export PATH=$HOME/openmpi/bin/:$PATH</code>}}


You should recompile your program before trying to use the new runtime environment.
== Running MPI on several sites at once ==
-->


== Make your own Kadeploy image with latest Open MPI version ==
In this section, we are going to execute a MPI process over several Grid'5000 sites. In this example we will use the following sites: Rennes, Sophia and Grenoble, using oargrid for making the reservation (see the [https://www.grid5000.fr/mediawiki/index.php/Advanced_OAR#Multi-site_jobs_with_OARGrid Advanced OAR] tutorial for more information).


=== Build a Kadeploy image ===
{{Warning|text=Open MPI tries to figure out the best network interface to use at run time. However, selected networks are not always "production" Grid'5000 network which is routed between sites. In addition, only TCP implementation will work between sites, as high performance networks are only available from the inside of a site. To ensure correct network is selected, add the option '''--mca opal_net_private_ipv4 "192.168.0.0/16" --mca btl_tcp_if_exclude ib0,lo --mca btl self,cm,tcp --mca pml ^ucx,cm''' to mpirun}}
If you need latest Open MPI version, or use Open MPI with specific compilation options, you must recompile Open MPI from sources. In this section we are going to build an image that includes latest version of Open MPI built from sources. Note that you could also build and install this custom Open MPI in your home directory, without requiring deploying (i.e., using <code>./configure --prefix=$HOME/openmpi/</code>).


This image will be based on jessie-x64-base. Let's deploy it:
{{Warning|text=By default, Open MPI may use only the short name of the nodes specified into the nodesfile; but to join grid5000 nodes that are located on different sites, we must use the FQDN names. For Open Mpi to correctly use FQDN names of the nodes, you must add the following option to mpirun: '''--mca orte_keep_fqdn_hostnames t'''}}
{{Term|location=frontend|cmd=<code class="command">oarsub</code> -I -t deploy -l nodes=1,walltime=2 }}
{{Term|location=frontend|cmd=<code class="command">kadeploy3</code> -f $OAR_NODEFILE -e jessie-x64-base -k }}
Connect to reserved node as root:
{{Term|location=frontend|cmd=<code class="command">ssh root@</code>$(head -1 $OAR_NODEFILE)}}
Download Open MPI sources from [http://www.open-mpi.org/software/ompi/ official website]:
{{Term|location=node|cmd=<code class="command">cd</code> /tmp/}}
{{Term|location=node|cmd=<code class="command">wget</code> http://www.open-mpi.org/software/ompi/v1.10/downloads/openmpi-1.10.2.tar.bz2}}
{{Term|location=node|cmd=tar -xf openmpi-1.10.2.tar.bz2}}
{{Term|location=node|cmd=cd openmpi-1.10.2}}
Install build dependencies:
{{Term|location=node|cmd=<code class="command">apt-get</code> update}}
{{Term|location=node|cmd=<code class="command">apt-get</code> -y install g++ make gfortran f2c libblas-dev}}
Configure, compile and install:
{{Term|location=node|cmd=./configure --libdir=/usr/local/lib64 --with-memory-manager=none}}
{{Term|location=node|cmd=make -j8}}
{{Term|location=node|cmd=make install}}


To run our MPI applications, we create a dedicated user named '''mpi'''. We add it to the '''rdma''' group to allow access to Infiniband hardware. Also, we copy the ~root/authorized_keys files so that we can login as user '''mpi''' from the frontend. We also create an SSH key for identifying the '''mpi''' user (needed by Open MPI).
The MPI program must be available on each site you want to use. From the frontend of one site, copy the mpi/ directory to the two other sites. You can do that with '''rsync'''. Suppose that you are connected in Sophia and that you want to copy Sophia's mpi/ directoy to Grenoble and Rennes.


groupadd rdma
{{Term|location=fsophia|cmd=<code class="command">rsync</code> -avz ~/mpi/ nancy.grid5000.fr:mpi/<br>
useradd -m -g rdma mpi -d /var/mpi -s /bin/bash
<code class="command">rsync</code> -avz ~/mpi/ grenoble.grid5000.fr:mpi/}}
echo "* hard memlock unlimited" >> /etc/security/limits.conf
(you can also add the ''--delete'' option to remove extraneous files from the mpi directory of Nancy and Grenoble).
echo "* soft memlock unlimited" >> /etc/security/limits.conf
mkdir ~mpi/.ssh
cp ~root/.ssh/authorized_keys ~mpi/.ssh
chown -R mpi ~mpi/.ssh
su - mpi
ssh-keygen -N "" -P "" -f /var/mpi/.ssh/id_rsa
cat .ssh/id_rsa.pub >> ~/.ssh/authorized_keys
echo "       StrictHostKeyChecking no" >> ~/.ssh/config
exit # exit session as MPI user
exit # exit the root connection to the node
# You can then copy your file from the frontend to the '''mpi''' home directory:
rsync -avz ~/mpi/ mpi@$(head -1 $OAR_NODEFILE):mpi/ # copy the tutorial


Save the newly created image by using tgz-g5k:
Reserve nodes in each site from any frontend with oargridsub (you can also add options to reserve nodes from specific clusters if you want to):
{{Term|location=frontend|cmd=ssh root@$(head -1 $OAR_NODEFILE) <code class="command">tgz-g5k</code> > $HOME/public/jessie-openmpi.tgz}}
{{Term|location=frontend|cmd=<code class="command">oargridsub</code> -w 02:00:00 <code class="replace">nancy</code>:rdef="nodes=2",<code class="replace">grenoble</code>:rdef="nodes=2",<code class="replace">sophia</code>:rdef="nodes=2" > oargrid.out}}
Get the node list using oargridstat and copy the list to the first node:
{{Term|location=frontend|cmd=<code class="command">oargridstat</code> -w -l $OARGRID_JOB_ID  &#124; grep -v ^$ > ~/gridnodes<br>
<code class="command">scp</code> ~/gridnodes $(head -1 ~/gridnodes):}}
Connect to the first node:
{{Term|location=frontend|cmd=<code class="command">ssh</code> $(head -1 ~/gridnodes)}}
And run your MPI application:
{{Term|location=node|cmd=<code class="command">cd</code> ~/mpi/<br>
<code class="command">mpirun</code> -machinefile ~/gridnodes --mca opal_net_private_ipv4 "192.168.0.0/16" --mca btl_tcp_if_exclude ib0,lo --mca btl self,vader,tcp --mca pml ^ucx,cm --mca orte_keep_fqdn_hostnames t tp}}


Copy the description file of jessie-x64-base:
== MPI and GPU to GPU communications ==
{{Term|location=frontend|cmd=kaenv3 -p jessie-x64-base &#124; grep -v visibility > $HOME/public/jessie-openmpi.dsc}}


Change the image name in the description file; we will use an http URL for multi-site deployment:
Direct GPU to GPU exchange of data (without having to transit on system RAM) is available with OpenMPI. On Grid'5000, this feature is currently only supported for AMD GPUs on the same node (see {{Bug|13559}} and {{Bug|13540}} for progress on other use cases).
{{Term|location=frontend|cmd=sed -i "s,server://.*images/jessie-x64-base.*,http://public.$(hostname -f&#124; cut -d. -f2).grid5000.fr/~$USER/jessie-openmpi.tgz," $HOME/public/jessie-openmpi.dsc}}


Release your job:
This feature is available using the [[#Use_a_newer_Open_MPI_version_using_modules|module version of OpenMPI]]. Will use OSU benchmark to demonstrate GPU to GPU communiction:
{{Term|location=frontend|cmd=<code class="command">oardel</code> $OAR_JOB_ID}}


=== Use your Kadeploy image ===
<pre>
==== Single site  ====
module load hip
Reserve some nodes and deploy them:
module load openmpi
{{Term|location=frontend|cmd=oarsub -I -t deploy -l /nodes=3}}
{{Term|location=frontend|cmd=kadeploy3 -a $HOME/public/jessie-openmpi.dsc -f $OAR_NODEFILE -k}}


Copy machines file and connect to first node:
wget http://mvapich.cse.ohio-state.edu/download/mvapich/osu-micro-benchmarks-5.9.tar.gz
{{Term|location=frontend|cmd=<code class="command">scp</code> $OAR_NODEFILE  mpi@$(head -1 $OAR_NODEFILE):nodes}}
tar xf osu-micro-benchmarks-5.9.tar.gz
{{Term|location=frontend|cmd=<code class="command">ssh</code> mpi@$(head -1 $OAR_NODEFILE)}}
cd osu-micro-benchmarks-5.9/


Copy your MPI application to other nodes and run it:
./configure --enable-rocm --with-rocm=$(hipconfig -p) CC=mpicc CXX=mpicxx LDFLAGS="-L$(ompi_info | grep Prefix: | cut -d': ' -f2)/lib/ -lmpi -L$(hipconfig -p)/lib/ $(hipconfig -C) -lamdhip64" CPPFLAGS="-std=c++11"
{{Term|location=node|cmd=<code class="command">cd</code> ~/mpi/}}
make
{{Term|location=node|cmd=<code class="command">/usr/local/bin/mpicc</code> tp.c -o tp}}
</pre>
{{Term|location=node|cmd=for node in $(uniq ~/nodes &#124; grep -v $(hostname)); do scp ~/mpi/tp $node:~/mpi/tp; done}}
{{Term|location=node|cmd=<code class="command">/usr/local/bin/mpirun</code> -machinefile ~/nodes ./tp}}


==== Multiple sites  ====
Then run OSU benchmark:
Choose three clusters from 3 different sites.
{{Term|location=frontend|cmd=<code class="command">oargridsub</code> -t deploy -w 02:00:00 <code class="replace">cluster1</code>:rdef="nodes=2",<code class="replace">cluster2</code>:rdef="nodes=2",<code class="replace">cluster3</code>:rdef="nodes=2" > oargrid.out}}
{{Term|location=frontend|cmd=<code class="command">export</code> OARGRID_JOB_ID=$(grep "Grid reservation id" oargrid.out &#124; cut -f2 -d=)}}


Get the node list using oargridstat:
<pre>
{{Term|location=frontend|cmd=<code class="command">oargridstat</code> -w -l $OARGRID_JOB_ID &#124; grep grid > ~/gridnodes}}
mpirun -np 2 --mca pml ucx -x UCX_TLS=self,sm,rocm mpi/pt2pt/osu_bw -d rocm D D
</pre>


Deploy on all sites using the --multi-server option :
The benchmark will report GPU to GPU bandwidth.
{{Term|location=frontend|cmd=<code class="command">kadeploy3</code> -f gridnodes -a $HOME/public/jessie-openmpi.dsc -k --multi-server}}


Copy machines file and connect to first node:
See also https://github.com/openucx/ucx/wiki/Build-and-run-ROCM-UCX-OpenMPI
{{Term|location=frontend|cmd=<code class="command">scp</code>  ~/gridnodes mpi@$(head -1 ~/gridnodes):}}
{{Term|location=frontend|cmd=<code class="command">ssh</code> mpi@$(head -1 ~/gridnodes)}}


Copy your MPI application to other nodes and run it:
= FAQ =
{{Term|location=node|cmd=<code class="command">cd</code> ~/mpi/}}
== Passing environment variables to nodes ==
{{Term|location=node|cmd=<code class="command">/usr/local/bin/mpicc</code> tp.c -o tp}}
While some batch schedulers (e.g. Slurm) transparently pass environment variables from the head node shell to all execution nodes given to <code class=command>mpirun</code>. OAR does not (OAR provides no more than what OpenSSH does, be it when using <code class=command>oarsh</code> or <code class=command>ssh</code> as the connector). Thus OAR leaves this responsibility of environment variables passing to mpirun.
{{Term|location=node|cmd=for node in $(uniq ~/gridnodes &#124; grep -v $(hostname)); do scp ~/mpi/tp $node:~/mpi/tp; done}}
{{Term|location=node|cmd=<code class="command">/usr/local/bin/mpirun</code> -machinefile ~/gridnodes --mca btl self,sm,tcp --mca opal_net_private_ipv4  "192.168.0.0/16" --mca btl_tcp_if_exclude ib0,lo --mca orte_keep_fqdn_hostnames 1 tp}}


<!--
Therefore, in order to have more than the default environment variables (<code class=replace>OMPI_*</code> variables) passed/set on execution nodes, one has different options:
== MPICH2 ==
; use the <code class=command>-x </code><code class=replace>VAR</code> option of <code class=command>mpirun</code>, possibly for each variable to pass (WARNING, -x is depreacted): Example:
mpirun -machinefile $OAR_NODE_FILE -x MY_ENV1 -x MY_ENV2 -x MY_ENV3="value3" ~/bin/mpi_test
; use the <code class=command>--mca mca_base_env_list "ENV[;...]"</code> option of <code class=command>mpirun</code>: Example:
mpirun -machinefile $OAR_NODE_FILE --mca mca_base_env_list "MY_ENV1;MY_ENV2;MY_ENV3=value3" ~/bin/mpi_test
; set the <code class=command>mca_base_env_list "ENV[;...]"</code> option in the <code class=file>~/.openmpi/mca-params.conf</code> file: This way passing variable become transparent to the <code class=command>mpirun</code> command line, which becomes:
mpirun -machinefile $OAR_NODE_FILE ~/bin/mpi_test


{{Warning|text=This documentation is about using MPICH2 with the MPD process manager. But the default process manager for MPICH2 is now Hydra. See also: [http://wiki.mpich.org/mpich/index.php/Using_the_Hydra_Process_Manager The MPICH documentation].}}
;Rq: <code class=command>-x </code> and <code class=command>--mca mca_base_env_list</code> cannot coexist.


If you want/need to use MPICH2 on Grid5000, you should do this:
This could especially be useful to pass OpenMP variables, such as ''OMP_NUM_THREADS''.


First, you have to do this once (on each site)
More info [https://www.open-mpi.org/doc/v4.0/man1/mpirun.1.php#toc22 in OpenMPI manual pages].
{{Term|location=frontend|cmd=<code class="command">echo</code> "MPD_SECRETWORD=<code class="replace">secret</code>" > $HOME/.mpd.conf}}
{{Term|location=frontend|cmd=<code class="command">chmod</code> 600 $HOME/.mpd.conf}}


Then you can use a script like this to launch mpd/mpirun:
NODES=$(uniq < $OAR_NODEFILE | wc -l | tr -d ' ')
NPROCS=$(c -l < $OAR_NODEFILE | tr -d ' ')
mpdboot --rsh=oarsh --totalnum=$NODES --file=$OAR_NODEFILE
sleep 1
mpirun -n $NPROCS <code class="replace">mpich2binary</code>
-->


{{Pages|HPC}}
{{Pages|HPC}}

Latest revision as of 16:29, 26 September 2023

Note.png Note

This page is actively maintained by the Grid'5000 team. If you encounter problems, please report them (see the Support page). Additionally, as it is a wiki page, you are free to make minor corrections yourself if needed. If you would like to suggest a more fundamental change, please contact the Grid'5000 team.

Introduction

MPI is a programming interface that enables the communication between processes of a distributed memory system. This tutorial focuses on setting up MPI environments on Grid'5000 and only requires a basic understanding of MPI concepts. For instance, you should know that standard MPI processes live in their own memory space and communicate with other processes by calling library routines to send and receive messages. For a comprehensive tutorials on MPI, see the IDRIS course on MPI. There are several freely-available implementations of MPI, including Open MPI, MPICH2, MPICH, LAM, etc. In this practical session, we focus on the Open MPI implementation.

Before following this tutorial you should already have some basic knowledge of OAR (see the Getting Started tutorial). For the second part of this tutorial, you should also know the basics about OARGRID (see the Advanced OAR tutorial).

Running MPI on Grid'5000

When attempting to run MPI on Grid'5000 you will face a number of challenges, ranging from classical setup problems for MPI software to problems specific to Grid'5000. This practical session aims at driving you through the most common use cases, which are:

  • Setting up and starting Open MPI on a default environment.
  • Setting up and starting Open MPI to use high performance interconnect.
  • Setting up and starting latest Open MPI library version.
  • Setting up and starting Open MPI to run on several sites using oargridsub.

Using Open MPI on a default environment

The default Grid'5000 environment provides Open MPI 4.1.0 (see ompi_info).

Creating a sample MPI program

For the purposes of this tutorial, we create a simple MPI program where the MPI process of rank 0 broadcasts an integer (42) to all the other processes. Then, each process prints its rank, the total number of processes and the value it received from the process 0.

In your home directory, create a file ~/mpi/tp.c and copy the source code:

Terminal.png frontend:
mkdir ~/mpi
vi ~/mpi/tp.c
#include <stdio.h>
#include <mpi.h>
#include <time.h> /* for the work function only */
#include <unistd.h>

int main (int argc, char *argv []) {
       char hostname[257];
       int size, rank;
       int bcast_value = 1;

       gethostname(hostname, sizeof hostname);
       MPI_Init(&argc, &argv);
       MPI_Comm_rank(MPI_COMM_WORLD, &rank);
       MPI_Comm_size(MPI_COMM_WORLD, &size);
       if (!rank) {
            bcast_value = 42;
       }
       MPI_Bcast(&bcast_value,1 ,MPI_INT, 0, MPI_COMM_WORLD );
       printf("%s\t- %d - %d - %d\n", hostname, rank, size, bcast_value);
       fflush(stdout);

       MPI_Barrier(MPI_COMM_WORLD);
       MPI_Finalize();
       return 0;
}

You can then compile your code:

Terminal.png frontend:
mpicc ~/mpi/tp.c -o ~/mpi/tp

Setting up and starting Open MPI on a default environment

Submit a job:

Terminal.png frontend:
oarsub -I -l nodes=3

OAR provides the $OAR_NODEFILE file, containing the list of nodes of the job (one line per CPU core). You can use it to launch your parallel job:

Terminal.png node:
mpirun -machinefile $OAR_NODEFILE ~/mpi/tp

You should have something like:

helios-52       - 4 - 12 - 42
helios-51       - 0 - 12 - 42
helios-52       - 5 - 12 - 42
helios-51       - 2 - 12 - 42
helios-52       - 6 - 12 - 42
helios-51       - 1 - 12 - 42
helios-51       - 3 - 12 - 42
helios-52       - 7 - 12 - 42
helios-53       - 8 - 12 - 42
helios-53       - 9 - 12 - 42
helios-53       - 10 - 12 - 42
helios-53       - 11 - 12 - 42

You may have (lot's of) warning messages if Open MPI cannot take advantage of any high performance hardware. At this point of the tutorial, this is not important as we will learn how to select clusters with high performance interconnect in greater details below. Error messages might look like this:

[1637577186.512697] [taurus-10:2765 :0]      rdmacm_cm.c:638  UCX  ERROR rdma_create_event_channel failed: No such device
[1637577186.512752] [taurus-10:2765 :0]     ucp_worker.c:1432 UCX  ERROR failed to open CM on component rdmacm with status Input/output error
[taurus-10.lyon.grid5000.fr:02765] ../../../../../../ompi/mca/pml/ucx/pml_ucx.c:273  Error: Failed to create UCP worker

To tell OpenMPI not try to use high performance hardware and avoid those warnings message, use the following options:

Terminal.png node:
mpirun --mca pml ^ucx -machinefile $OAR_NODEFILE $HOME/mpi_programm
Note.png Note

In case you submitted a job that does not reserve entire nodes (all CPU cores of all nodes), you have to use oarsh as MPI remote shell connector. To do so with Open MPI, you can add --mca orte_rsh_agent "oarsh" to your mpirun command line. Open MPI will then use oarsh in place of ssh.

Terminal.png node:
mpirun --mca orte_rsh_agent "oarsh" -machinefile $OAR_NODEFILE ~/mpi/tp

You can also set an environment variable (usually in your .bashrc):

Terminal.png bashrc:
export OMPI_MCA_orte_rsh_agent=oarsh
Terminal.png node:
mpirun -machinefile $OAR_NODEFILE ~/mpi/tp

Open MPI also provides a configuration file for --mca parameters. In your home directory, create a file as ~/.openmpi/mca-params.conf

orte_rsh_agent=oarsh
filem_rsh_agent=oarcp

Setting up and starting Open MPI to use high performance interconnect

Open MPI provides several alternative compononents to use High Performance Interconnect hardware (such as Infiniband or Omni-Path).

MCA parameters (--mca) can be used to select the component that are used at run-time by OpenMPI. To learn more about the MCA parameters, see also:

Open MPI packaged in Grid'5000 debian11 includes ucx, ofi and openib components to make use of Infiniband network, and psm2 and ofi to make use of Omnipath network.

If you want some of these components, you can for example use --mca pml ^ucx --mca mtl ^psm2,ofi --mca btl ^ofi,openib. This disables all high performance components mentionned above and will force Open MPI to use its TCP backend.


Infiniband network

By default, OpenMPI tries to use Infiniband high performance interconnect using the UCX component. When Infiniband network is available, it will provide best results in most of cases (UCX even uses multiple interfaces at a time when available).

Omni-Path network

For Open MPI to work with Omni-Path network hardware, PSM2 component must be used. It is recommended to explicitly disable other components (otherwise, OpenMPI will try to load other components which may produce error messages or provide lower performance):

Terminal.png node:
mpirun -machinefile $OAR_NODEFILE -mca mtl psm2 -mca pml ^ucx,ofi -mca btl ^ofi,openib ~/mpi/tp

IP over Infiniband or Omni-Path

Nodes with Infiniband or Omni-Path network interfaces also provide an IP over Infiniband interface (these interfaces are named ibX). The TCP backend of Open MPI will try to use them by default.

You can explicitely select interfaces used by the TCP backend using for instance --mca btl_tcp_if_exclude ib0,lo (to avoid using IP over Infiniband and local interfaces) or --mca btl_tcp_if_include eno2 (to force using the 'regular' Ethernet interface eno2).


Benckmarking

We will be using OSU micro benchmark to check the performances of high performance interconnects.

To download, extract and compile our benchmark, do:

Terminal.png frontend:
cd ~/mpi

wget https://mvapich.cse.ohio-state.edu/download/mvapich/osu-micro-benchmarks-5.8.tgz
tar xf osu-micro-benchmarks-5.8.tgz
cd osu-micro-benchmarks-5.8/
./configure CC=$(which mpicc) CXX=$(which mpicxx)

make

As we will benchmark two MPI processes, reserve only one core in two distinct nodes.

Terminal.png frontend:
oarsub -I -l nodes=2

To start the network benchmark, use:

Terminal.png node:
mpirunmpirun -machinefile $OAR_NODEFILE -npernode 1 ~/mpi/osu-micro-benchmarks-5.8/mpi/pt2pt/osu_latency

The option `-npernode 1` tells to only spawn one process on each node, as the benchmark requires only two processes to communicate.

You can then try to compare performance of various network hardware available on Grid'5000. See for instance Network section of Hardware page.

OAR can select nodes according to properties related to network performance. For example:

  • To reserve one core of two distinct nodes with a 56Gbps InfiniBand interconnect:
Terminal.png frontend:
oarsub -I -l /nodes=2/core=1 -p "ib_rate=56"
  • To reserve one core of two distinct nodes with a 100Gbps Omni-Path interconnect:
Terminal.png frontend:
oarsub -I -l /nodes=2/core=1 -p "opa_rate=100"

Use a newer Open MPI version using modules

Newer Open MPI versions are available as module. To list available versions, use this command.

Terminal.png frontend:
module av openmpi/
[...]
openmpi/4.1.4_gcc-10.4.0
[...]

This will load chosen Open MPI to execution your environment:

Terminal.png frontend:
module load openmpi/4.1.4_gcc-10.4.0
mpirun --version

You must recompile simple MPI example on the frontend with this new version.

Terminal.png frontend:
mpicc ~/mpi/tp.c -o ~/mpi/tp

From your job, you must ensure the same Open MPI version is used on every nodes:

Terminal.png frontend:
oarsub -I -l nodes=3
Terminal.png node:
module load openmpi/4.1.4_gcc-10.4.0
$(which mpirun) -machinefile $OAR_NODEFILE ~/mpi/tp

Note that $(which mpirun) command is used in this last step to ensure mpirun from the module environment is used.

Installing Open MPI in a conda environment

Here's an example of installing Open MPI in a conda environment optimized with ucx to use the cluster's high-bandwidth and low-latency.

We work on Grenoble site

UCX exposes a set of abstract communication primitives that utilize the best of available hardware resources and offloads. These include RDMA (InfiniBand and RoCE), TCP, GPUs, shared memory, and network atomic operations.

Installation
  • Install OpenMPI, ucx, and GCC from conda-forge channel in the <env_name> environment
Terminal.png fgrenoble:
conda create -y -n <env_name>

conda activate <env_name>

conda install -c conda-forge gcc_linux-64 openmpi ucx

Note: do not forget to create a dedicated environment before.

Test installation via NetPIPE
  • Install NetPIPE to test latency and network throughput (NetPIPE not available as conda package)
Terminal.png fgrenoble:
cd $HOME ; mkdir SRC && cd SRC

wget https://src.fedoraproject.org/lookaside/pkgs/NetPIPE/NetPIPE-3.7.2.tar.gz/653071f785404bb68f8aaeff89fb1f33/NetPIPE-3.7.2.tar.gz
tar zvxf NetPIPE-3.7.2.tar.gz

cd NetPIPE-3.7.2/ && make mpi
  • Reserve 2 cores on 2 separate nodes and enter into interactive session (ex: cluster dahu in Grenoble) :
Terminal.png fgrenoble:
oarsub -I -p dahu -l /nodes=2/core=1

Note: choose an appropriate cluster with OminPath or InfiniBand Network connection to compare performance between two nodes using or not ucx driver. See Grid'5000 Hardware Documentation.

  • On node dahu-X : Load conda, activate your conda environment, modify $PATH
Terminal.png dahu:
module load conda

conda activate <env_name>

export PATH=~/SRC/NetPIPE-3.7.2:$PATH
  • Run MPI without ucx (use standard network):
Terminal.png dahu:
mpirun -np 2 --machinefile $OAR_NODEFILE --prefix $CONDA_PREFIX --mca plm_rsh_agent oarsh NPmpi
0: dahu-3
1: dahu-30
Now starting the main loop
  0:       1 bytes   6400 times -->      0.54 Mbps in      14.21 usec
  1:       2 bytes   7035 times -->      1.07 Mbps in      14.20 usec
  2:       3 bytes   7043 times -->      1.61 Mbps in      14.22 usec
...
116: 4194304 bytes     12 times -->   8207.76 Mbps in    3898.75 usec
117: 4194307 bytes     12 times -->   8161.45 Mbps in    3920.87 usec
...
  • Run MPI with ucx (use rapid network):
Terminal.png dahu:
mpirun -np 2 --machinefile $OAR_NODEFILE --prefix $CONDA_PREFIX --mca plm_rsh_agent oarsh --mca pml ucx --mca osc ucx NPmpi
0: dahu-3
1: dahu-30
Now starting the main loop
  0:       1 bytes  19082 times -->      1.69 Mbps in       4.50 usec
  1:       2 bytes  22201 times -->      3.08 Mbps in       4.95 usec
  2:       3 bytes  20212 times -->      4.46 Mbps in       5.13 usec
...
116: 4194304 bytes     46 times -->  30015.10 Mbps in    1066.13 usec
117: 4194307 bytes     46 times -->  30023.66 Mbps in    1065.83 usec
...


Using other MPI implementations

Both MPICH and MVAPICH are available as modules on Grid5000. Both have the same architecture when it comes to managing networks: they can both be compiled with UCX *or* with OFI, and therefore there are two versions of the modules available:

 - mpich/{version...}-ofi, which should be used on OmniPath interconnects.
 - mpich/{version...}-ucx, which should be used for infiniband interconnects.

When in doubt, prefer the OFI version as it offers better performances when using the TCP modules. The MPI implementation should automatically select the "best" network available and use it, but if at some point you want to explicitly set which transport layer to use, there are ways to do so for both OFI and UCX.

Choosing the transport layer with OFI

OFI uses libfabric to handles the underlying networks, and you can use a couple of variables to filter/select the transport layer to use. The first one is FI_PROVIDER.

The command fi_info -l should provide enough information about the fabrics available. Typically, you can set it to psm2 to force using OmniPath, or tcp to force communication to go through the tcp module (either over IP or over OmniPath depending on the interface used.

You can select the interface(s) to use for the tcp module by setting the FI_TCP_IFACE variable.

Choosing the transport layer with UCX

Similarly to OFI, you can use an environment variable to tell UCX to use a specific transport layer: UCX_TLS.

The command ucx_info -d to get information about the available transport layer.

You can select the interface(s) to use by setting the UCX_NET_DEVICES variable.

More advanced use cases

Running MPI on several sites at once

In this section, we are going to execute a MPI process over several Grid'5000 sites. In this example we will use the following sites: Rennes, Sophia and Grenoble, using oargrid for making the reservation (see the Advanced OAR tutorial for more information).

Warning.png Warning

Open MPI tries to figure out the best network interface to use at run time. However, selected networks are not always "production" Grid'5000 network which is routed between sites. In addition, only TCP implementation will work between sites, as high performance networks are only available from the inside of a site. To ensure correct network is selected, add the option --mca opal_net_private_ipv4 "192.168.0.0/16" --mca btl_tcp_if_exclude ib0,lo --mca btl self,cm,tcp --mca pml ^ucx,cm to mpirun

Warning.png Warning

By default, Open MPI may use only the short name of the nodes specified into the nodesfile; but to join grid5000 nodes that are located on different sites, we must use the FQDN names. For Open Mpi to correctly use FQDN names of the nodes, you must add the following option to mpirun: --mca orte_keep_fqdn_hostnames t

The MPI program must be available on each site you want to use. From the frontend of one site, copy the mpi/ directory to the two other sites. You can do that with rsync. Suppose that you are connected in Sophia and that you want to copy Sophia's mpi/ directoy to Grenoble and Rennes.

Terminal.png fsophia:
rsync -avz ~/mpi/ nancy.grid5000.fr:mpi/
rsync -avz ~/mpi/ grenoble.grid5000.fr:mpi/

(you can also add the --delete option to remove extraneous files from the mpi directory of Nancy and Grenoble).

Reserve nodes in each site from any frontend with oargridsub (you can also add options to reserve nodes from specific clusters if you want to):

Terminal.png frontend:
oargridsub -w 02:00:00 nancy:rdef="nodes=2",grenoble:rdef="nodes=2",sophia:rdef="nodes=2" > oargrid.out

Get the node list using oargridstat and copy the list to the first node:

Terminal.png frontend:
oargridstat -w -l $OARGRID_JOB_ID | grep -v ^$ > ~/gridnodes
scp ~/gridnodes $(head -1 ~/gridnodes):

Connect to the first node:

Terminal.png frontend:
ssh $(head -1 ~/gridnodes)

And run your MPI application:

Terminal.png node:
cd ~/mpi/
mpirun -machinefile ~/gridnodes --mca opal_net_private_ipv4 "192.168.0.0/16" --mca btl_tcp_if_exclude ib0,lo --mca btl self,vader,tcp --mca pml ^ucx,cm --mca orte_keep_fqdn_hostnames t tp

MPI and GPU to GPU communications

Direct GPU to GPU exchange of data (without having to transit on system RAM) is available with OpenMPI. On Grid'5000, this feature is currently only supported for AMD GPUs on the same node (see bug #13559 and bug #13540 for progress on other use cases).

This feature is available using the module version of OpenMPI. Will use OSU benchmark to demonstrate GPU to GPU communiction:

module load hip
module load openmpi

wget http://mvapich.cse.ohio-state.edu/download/mvapich/osu-micro-benchmarks-5.9.tar.gz
tar xf osu-micro-benchmarks-5.9.tar.gz
cd osu-micro-benchmarks-5.9/

./configure --enable-rocm --with-rocm=$(hipconfig -p) CC=mpicc CXX=mpicxx LDFLAGS="-L$(ompi_info | grep Prefix: | cut -d': ' -f2)/lib/ -lmpi -L$(hipconfig -p)/lib/ $(hipconfig -C) -lamdhip64" CPPFLAGS="-std=c++11"
make

Then run OSU benchmark:

mpirun -np 2 --mca pml ucx -x UCX_TLS=self,sm,rocm mpi/pt2pt/osu_bw -d rocm D D

The benchmark will report GPU to GPU bandwidth.

See also https://github.com/openucx/ucx/wiki/Build-and-run-ROCM-UCX-OpenMPI

FAQ

Passing environment variables to nodes

While some batch schedulers (e.g. Slurm) transparently pass environment variables from the head node shell to all execution nodes given to mpirun. OAR does not (OAR provides no more than what OpenSSH does, be it when using oarsh or ssh as the connector). Thus OAR leaves this responsibility of environment variables passing to mpirun.

Therefore, in order to have more than the default environment variables (OMPI_* variables) passed/set on execution nodes, one has different options:

use the -x VAR option of mpirun, possibly for each variable to pass (WARNING, -x is depreacted)
Example:
mpirun -machinefile $OAR_NODE_FILE -x MY_ENV1 -x MY_ENV2 -x MY_ENV3="value3" ~/bin/mpi_test
use the --mca mca_base_env_list "ENV[;...]" option of mpirun
Example:
mpirun -machinefile $OAR_NODE_FILE --mca mca_base_env_list "MY_ENV1;MY_ENV2;MY_ENV3=value3" ~/bin/mpi_test
set the mca_base_env_list "ENV[;...]" option in the ~/.openmpi/mca-params.conf file
This way passing variable become transparent to the mpirun command line, which becomes:
mpirun -machinefile $OAR_NODE_FILE ~/bin/mpi_test
Rq
-x and --mca mca_base_env_list cannot coexist.

This could especially be useful to pass OpenMP variables, such as OMP_NUM_THREADS.

More info in OpenMPI manual pages.