> Maximiliano Geier

Introduction Methodology

Methodology Convergence for Distributed Applications Where do we stand?

Maximiliano Geier

AlGorille Group INRIA Lorraine Nancy, France

March 12, 2013

Introduction

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Maximiliano Geier

Methodology Convergence for Distributed

Applications

Introduction

Observations

Conclusions

- Understanding a distributed application is not easy
 - Parallelism
 - Complex, dynamic system
 - Multiple subsystems involved
 - Network
 - Disk
 - CPU
- Experiments help us understand their behavior

Motivation

イロト 不得 トイヨト イヨト

ъ

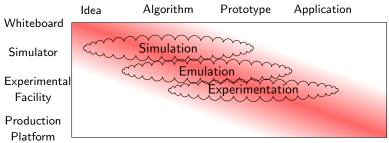
Methodology Convergence for Distributed Applications

Maximiliano Geier

Introduction Methodology

• Three different paradigms

- Simulation: prototypes of applications on system models
 Emulation: real applications on synthetic platforms
- 3 Experimentation: real applications on a real platform
- Tools in each paradigm evolve independently
- We need an unified approach


Maximiliano Geier

Introduction Methodology Observations Conclusions

Our Dream

(日)、

Methodologies must be combined

- Share experiments description, DoE and visualization tools
- · Be able to switch seamlessly to the most apt tool

Thanks to Martin for this slide!

Maximiliano Geier

Introduction Methodology

Conclusions

Coming up next . . .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Tool choice
- Methodology description
- Issues arised from using the tools
- Potential improvements
- Future work
- Conclusions

The Tools

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Geier

Methodology Convergence for Distributed

> Applications Maximiliano

- Methodology
- Observations
- Conclusions

1 Simulation

- Simgrid: more than 100 papers built on it
- 2 Emulation
 - Distem: new platform based on Wreakavoc
- 3 Experimentation
 - Grid'5000: proven platform, 11 sites all over France and Luxembourg
- All of them are good for the job
- We can concentrate on the methodology

> Maximiliano Geier

Introduction Methodology

Observations

Conclusions

The Methodology

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Usual approach

- Questions are the driver
- Methodology comes afterwards
- Result: interesting question, lacking methodology

Our approach

- Trivial question
- Focus on methodology convergence

Question:

How do chain propagation algorithms perform to broadcast files in local area networks?

- We (kind of) already know the answer
- Kastafior

The Traps

Methodology Convergence for Distributed Applications

Maximiliano Geier

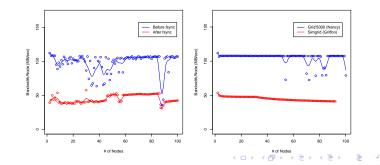
Introduction Methodology

Observations

Conclusions

Trap: It's difficult to get the platform right

- Information accuracy
- User mistakes
- Mapping among the tools
 - Distem can load Simgrid v2 platforms, not there yet



Maximiliano Geier

- Introduction
- Methodology
- Observations
- Conclusions

Trap: Working with abstractions

- Simgrid
 - Transport protocol
 - Connection flow
 - Model parameters that effect flow
 - Simulated hardware
- Distem
 - Node mapping
 - · Model parameters that depend on the mapping

The Traps (cont.)

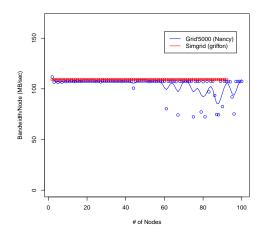
Maximiliano Geier

Introduction

Observations

Conclusions

Trap: Model complexity


- Impossible to take everything into account
- Work application around abstractions
- Simplify aspects that are not interesting to analyze
 - Code bloat
 - Bugs

The Traps (cont.)

Working it out

・ロト ・ 一下・ ・ モト・ ・ モト・

æ

- Very similar results in Simgrid and Grid'5000
- Distem work is still ongoing

Methodology Convergence for Distributed

> Applications Maximiliano Geier

Observations

Maximiliano Geier

Introduction Methodology

Observations

Conclusions

Potential Improvements

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Working with different platforms

- Client input is usually a list of hosts
- Converge name handling
 - Automatic DNS or /etc/hosts setup
 - Simgrid: it's already there
 - Distem: virtual node names
 - Grid'5000: OAR nodes
 - Doable by hand, but better if the tool does it for you

> Maximiliano Geier

Introduction

Methodology

Observations

Conclusions

Potential Improvements (cont.)

Platform convergence

- Reduce error-prone work duplication
 - Extensible platform description for Simgrid
 - Already using XML, but not really extensible

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Converters
 - JSON (Distem) to XML (Simgrid)
 - XML to JSON

> Maximiliano Geier

Introduction

Observations

Conclusions

Towards an integrated framework

- Understand power and limitations of the tools
- Use tools to manage experiment workflow
 - Easier to work with several experimental frameworks

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Identify application traits
 - Type of traffic
 - Transport protocol
 - Bottlenecks
 - etc.
- Corroborate models whenever possible

Future Work

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Methodology Convergence for Distributed Applications

Maximiliano Geier

- Introduction
- Methodology
- Observations
- Conclusions

- Check platforms: linktest
 - Latency
 - Bandwidth
 - Tests go three-way
- Converge model descriptions
- Get Distem into the picture
- Work on visualization aspects to improve analysis

Conclusions

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Methodology Convergence for Distributed Applications

Maximiliano Geier

- Introduction Methodology Observations
- Conclusions

- Each paradigm shows a different perspective
- All of them are useful in different ways
- · We should try to make it easier to use all approaches
 - Tool designers
 - Users
- Tools to manage experiments
- Abstraction and modularization

> Maximiliano Geier

Introduction

Methodolog

Observations

Conclusions

The End

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Questions?