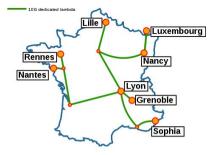
# The data-centers facet of SILECS (A.K.A. Grid'5000)


Frédéric Desprez & Lucas Nussbaum

Grid'5000 Scientific & Technical Directors

2019-04-25

### The Grid'5000 testbed

- A large-scale testbed for distributed computing
  - 8 sites, 31 clusters, 828 nodes, 12328 cores
  - Dedicated 10-Gbps backbone network
  - 550 users and 120 publications per year



## The Grid'5000 testbed

- A large-scale testbed for distributed computing
  - 8 sites, 31 clusters, 828 nodes, 12328 cores
  - Dedicated 10-Gbps backbone network
  - 550 users and 120 publications per year
- A meta-cloud, meta-cluster, meta-data-center
  - Used by CS researchers in HPC, Clouds, Big Data, Networking, AI
  - To experiment in a fully controllable and observable environment
  - Similar problem space as Chameleon and Cloudlab (US)
  - Design goals
    - ★ Support high-quality, reproducible experiments
    - ★ On a large-scale, distributed, shared infrastructure





## Landscape – cloud & experimentation<sup>1</sup>

- Public cloud infrastructures (AWS, Azure, Google Cloud Platform, etc.)
  - © No information/guarantees on placement, multi-tenancy, real performance
- Private clouds: Shared observable infrastructures
  - Solution Monitoring & measurement
  - © No control over infrastructure settings
  - → Ability to understand experiment results
- ► Bare-metal as a service, fully reconfigurable infrastructure (Grid'5000)
  - © Control/alter all layers (virtualization technology, OS, networking)
  - → In vitro Cloud

### And the same applies to all other environments (e.g. HPC)

<sup>&</sup>lt;sup>1</sup>Inspired from a slide by Kate Keahey (Argonne Nat. Lab.)

# Some recent results from Grid'5000 users

- Portable Online Prediction of Network Utilization (Inria Bdx + US)
- Energy proportionality on hybrid architectures (LIP/IRISA/Inria)
- Maximally Informative Itemset Mining (Miki) (LIRM/Inria)
- Damaris (Inria)
- BeBida: Mixing HPC and BigData Workloads (LIG)
- ► HPC: In Situ Analytics (LIG/Inria)
- Addressing the HPC/Big-Data/IA Convergence
- An Orchestration Syst. for IoT Applications in Fog Environment (LIG/Inria)
- Toward a resource management system for Fog/Edge infrastructures
- Distributed Storage for Fog/Edge infrastructures (LINA)
- From Network Traffic Measurements to QoE for Internet Video (Inria)

## Portable Online Prediction of Network Utilization

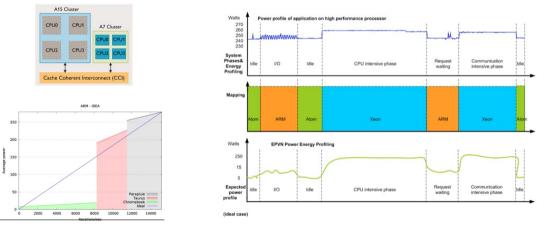
### Problem

Predict network utilization in near future to enable optimal utilization of spare bandwidth for low-priority asynchronous jobs co-located with an HPC application

### Goals

• High accuracy, low compute overhead, learn on-the-fly without previous knowledge

### Proposed solution


- Dynamic sequence-to-sequence recurrent neural networks that learn using a sliding window approach over recent history
- Evaluate the gain of a tree-based meta-data management
- INRIA, The Univ. of Tennessee, Exascale Comp. Proj., UC Irvine, Argonne Nat. Lab.

### Grid'5000 experiments

- Monitor and predict network utilization for two HPC applications at small scale (30 nodes)
- Easy customization of environment for rapid prototyping and validation of ideas (in particular, custom MPI version with monitoring support)
- Impact: Early results facilitated by Grid'5000 are promising and motivate larger scale experiments on leadership class machines (Theta@Argonne)

## **Energy proportionality on hybrid architectures**<sup>2</sup>

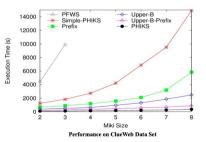
- Hybrid computing architectures : low power processors, co processors, GPUs...
- Supporting a "Big, Medium, Little" approach : the right processor at the right time



<sup>2</sup>V. Villebonnet, G. Da Costa, L. Lefèvre, J.-M. Pierson and P. Stolf. "Big, Medium, Little" : Reaching Energy Proportionality with Heterogeneous Computing Scheduler", Parallel Processing Letters, 25 (3), Sep. 2015

## Maximally Informative Itemset Mining (Miki)<sup>3</sup>

Extracting knowledge from data


**Miki:** measures the quantity of information (e.g., based on joint entropy measure) delivered by the itemsets of size k in a database (i.e., k denotes the number of items in the itemset)

### > PHIKS, a parallel algorithm for mining of maximally informative k-itemsets

- Very efficient for parallel miki discovery
- High scalability with very large amounts of data and high size of the itemsets
- Includes several optimization techniques
- Communication cost reduction using entropy bound filtering
- Incremental entropy computation
- Prefix/Suffix technique for reducing response time

### Experiments on Grid'5000

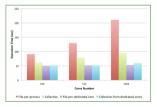
- Hadoop/Map Reduce on 16 and 48 nodes
- Datasets of 49 Gb (English Wikipedia, 5 millions articles),
  - 1 Tb (ClueWeb, 632 millions articles)
- Metrics: Response time, communication cost, energy consumption



<sup>3</sup> S.Salah, R. Akbarinia, F. Masseglia. A Highly Scalable Parallel Algorithm for Maximally Informative k-Itemset Mining. Knowledge and Information Systems (KAIS), Springer, 2017, 50 (1)

### **Damaris**

### Scalable, asynchronous data storage for large-scale simulations using the HDF5 format


#### Traditional approach

- All simulation processes (10K+) write on disk at the same time synchronously
- Problems: 1) I/O jitter, 2) long I/O phase, 3) Blocked simulation during data writing
- Solution
  - Aggregate data in dedicated cores using shared memory and write asynchronously

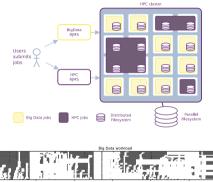
#### Grid'5000 used as a testbed

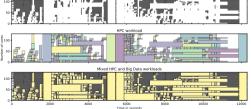
- Access to many (1024) homogeneous cores
- Customizable environment and tools
- Repeat the experiments later with the same environment saved as an image
- The results show that Damaris can provide a jitter-free and wait-free data storage mechanism
- G5K helped prepare Damaris for deployment on top supercomputers (Titan, Pangea (Total), Jaguar, Kraken, etc.)
- https://project.inria.fr/damaris/





8/25


## BeBida: Mixing HPC and BigData Workloads


**Objective:** Use idle HPC resources for BigData workloads

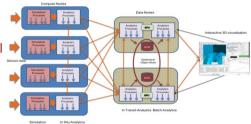
- Simple approach
  - HPC jobs have priority
  - BigData Framework: Spark/Yarn, HDFS
  - Evaluating costs of starting/stopping tasks (Spark/Yarn) and data transferts (HDFS)

### Results

- It increases cluster utilisation
- Disturbance of HPC jobs is small
- Big Data execution time varies (WIP)






## **HPC: In Situ Analytics**

Goal: improve organization of simulation and data analysis phases

- Simulate on a cluster; move data; post-mortem analysis
  - Unsuitable for Exascale (data volume, time)
- Solution: analyze on nodes, during simulation
  - Between or during simulation phases? dedicated core? node?

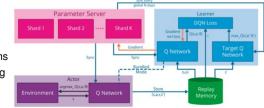
### Grid'5000 used for development and test, because control 🔶

- of the software environment (MPI stacks),
- of CPU performance settings (Hyperthreading),
- of networking settings (Infiniband QoS).



Then evaluation at a larger scale on the Froggy supercomputer (CIMENT center/GRICAD, Grenoble)

## Addressing the HPC/Big-Data/IA Convergence<sup>4</sup>


#### Gathering teams from HPC, Big Data, and Machine Learning to work on the convergence of

- Smart Infrastructure and resource management
- HPC acceleration for AI and Big Data
- AI/Big Data analytics for large scale scientific simulations

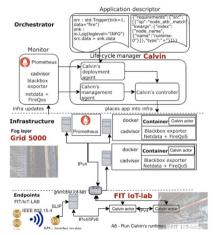
#### **Current work**

- Molecular dynamics trajectory analysis with deep learning
  - Dimension reduction through DL, accelerating MD simulation coupling HPC simulation and DL
- Flink/Spark stream processing for in-transit on-line analysis of parallel simulation outputs
- Shallow Learning
  - Accelerating Scikit-Learn with task-based progamming (Dask, StarPU)
- Deep Learning
  - TensorFlow graph scheduling for efficient parallel executions
  - Linear algebra and tensors for large scale machine learning
  - Large scale parallel deep reinforcement learning

<sup>4</sup>https://project.inria.fr/hpcbigdata/



## An Orchestration Syst. for IoT Applications in Fog Environment


Objective: Design a Optimized Fog Service Provisioning strategy (O-FSP) and validate it on a real infrastructure

### Contributions

- Design and implementation of FITOR, an orchestration framework for the automation of the deployment, the scalability management, and migration of micro-service based IoT applications
- Design of a provisioning solution for IoT applications that optimizes the placement and the composition of IoT components, while dealing with the heterogeneity of the underlying Fog infrastructure

### Experiments

- Fog layer = 20 servers from Grid5000 which are part of the genepi cluster, Mist layer = 50 A8 nodes from IOTLab
- Use of a software stack made of open-source components (Calvin, Prometheus, Cadvisor, Blackbox exporter, Netdata)
- Experiments show that the O-FSP strategy makes the provisioning more effective and outperforms classical strategies in terms of: i) acceptance rate, ii) provisioning cost, and iii) resource usage



Toward a resource management system for Fog/Edge infras.

#### Inria Project Lab: Discovery

- Design a resource management system (a.k.a. a cloudkit) for Fog/Edge infrastructures
- A four year project started in 2015 with Inria. Orange (and initially Renater)
- Designing from scratch such a system cannot be envisioned (OpenStack 13 Millions of LOCs)

#### Contributions


- Implementation of a complete workflow to evaluate OpenStack WANWide scenarios
- Evaluate OpenStack up to 1000 compute nodes (Grid'5000, oct 2016)
- Evaluate OpenStack WANWide (impact of latency and throughput constraints) (oct 2017)
- Evaluation of communication bus for Fog/Edge scenarios (May 2018)
- Evaluation of database backends (NewSQL, NoSQL, etc. (May 2018)

#### Multi-Level Elasticity for Data Stream Processing

Vania Marangozova-Martin, Nolil de Palma and Ahmed El Rheddane Univ. Grenoble Alpes. CNRS, LIG, F-38000 Grenoble France E-mail: firstName.secondName@bimap.fr

provide an experimental evaluation with real world applications which validates the applicability of our approach.

Index Terma-stream processing, multi-level elasticity. Apache fittern



E. Desprez & L. Nussbaum SILECS/Datacenters - Grid'5000

would need to be deployed in containers with different [18] "CoMD," https://gpuopen.com/compute-product/comd/ capacities which in turn call for multi-dimensional-binpacking-oriented scheduling [45]

#### ACKNOWLEDGEMENTS

The experimental work presented in this paper would not have been possible without the existence of the Grid'5000 platform and the help of the supporting teams. The authors would also like to thank the euos team who made the Openstack deployment process a child's play.

[19] Y. Wu and K. L. Tan, "ChronoStream: Elastic Stateful Stream Computation in the Cloud," in 2015 IEEE 31st International Conference on Data Engineering, April 2015, pp. 723-734. [20] V. Gulisano, R. Jimenez-Peris, M. Patino-Martinez, C. Sorient

and P. Valduriez, "StreamCloud: An Elastic and Scalable Data Streaming System," IEEE Trans. Parallel Distrib. Sust., vol. 23. no. 12, pp. 2351-2365, Dec. 2012. 211 L. Neumeyer, B. Robbins, A. Nair, and A. Kesari, "S4: Distributed

stream computing platform," in Data Mining Workshops (ICDMW), 2010 IEEE International Conference on. IEEE, 2010, pp. 170-177. 2] OnonStack https://www.openstack.org/ [23] "Grid'5000," http://www.grid5000.fr/

[24] R. Cherrueau, D. Pertin, A. Simonet, A. Lebre, and M. Simonin



PENATER Internet

Vestlemap mitropoli

#### Deploy a micro DC on each Network Point of Presence

## Toward a resource management system for Fog/Edge infras.

#### Inria Project Lab: Discovery (contd)

- The creation of a dedicated working group within the OpenStack community that deals with Fog/Edge challenges (now managed by the foundation with key actors such as ATT, Verizon, CISCO, China mobile etc.)
- Several presentations / publications (see the DISCOVERY website)
- France has the main academic actor in the worldwide community (Inria/IMT Atlantique) thanks to the G5K testbed in particular.
  - ★ A leadership position
  - A strong expertise for experiments related to performance, scalability of OpenStack components (concrete actions with RedHat, ongoing actions with Huawei, etc.)





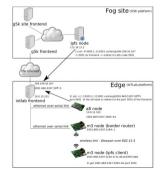
Open Infrastructure summit Vancouver May 2018 (3000 participants)

## **Distributed Storage for Fog/Edge infrastructures**

#### Objective

- Design of a storage system taking locality of edge resources into account
- "Must-have" Properties: data locality, network containment, mobility support, disconnected mode, scalability

#### Contributions


- Improving data locality by interconnecting Fog Scale-Out NAS systems with IPFS
- Improving meta-data locality thanks to a tree based approach inspired by the DNS

#### Grid'5000 based experiments

- Evaluate the gain of using IPFS and scale out NAS systems for a 10 fog site infrastructure emulated on Grid'5000 (clients are deployed within Grid'5000).
- Evaluate the gain of a tree-based meta-data management
- ICFEC'2017 and GLOBECOM 2018

#### Grid'5000-FIT experiments

- Evaluate the penalties/side effects of using representative Fog clients (Fog servers are deployed on Grid'5000 and clients on the IoTLab platform)
- Enabled us to identify several limitations (experiments using IoTlab and Grid'5000 are (currently) not easy to perform)



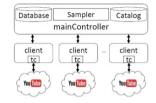
## From Network Traffic Measurements to QoE for Internet Video

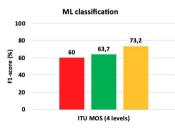
# **Problem solved:** Estimation of QoE from encrypted video traces using network level measurements only)

Play out a wide range of videos under realistic network conditions to build ML models (classification and regression) that predict the subjective MOS (Mean Opinion Score) based on the ITU P.1203 model along with the QoE metrics of startup delay, quality (spatial resolution) of playout and quality variations using only the underlying network Quality of Service (QoS) features

### A diverse QoS-QoE dataset

 Around 100k unique video playouts from geographically distributed locations (Sophia Antipolis, Grenoble, Rennes, Nancy, Nantes) using compute resources from AWS, Grid5000, and R2lab platforms


### Input features for ML:


Network QoS (outband,inband, inband+chunks)

### Output labels:

App QoS (startup delay, resolution, quality switches) and ITU P.1203 MOS)

M. Khokhar, T. Ehlinger, C. Barakat. From Network Traffic Measurements to QoE for Internet Video. IFIP Networking Conference 2019,





- Discovering resources and selecting resources
- Provide the resources to meet experimental needs
- Monitoring experiments, extracting and analyzing data
- O Controlling experiments  $\rightsquigarrow$  automation, reproducible research

## **Discovering and selecting resources**

- Describing resources ~> understand results
  - Covering nodes and network infrastructure
  - Machine-parsable format → scripts
  - Human-readable description on the web<sup>5</sup>
  - Archived (State of testbed 6 months ago?)

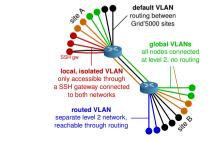
Verified

- ★ Avoid inaccuracies/errors ~> wrong results
- ★ Self-checking by nodes before each reservation

### Selecting resources

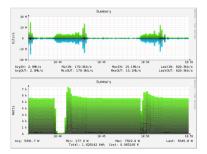
Complex queries using resource manager
oarsub -p "wattmeter='YES' and gpu='YES'"
oarsub -l "{cluster='a'}/nodes=1+
 {cluster='b' and eth10g='Y'}/nodes=2"

<sup>5</sup>https://www.grid5000.fr/w/Hardware


| "processor": {                           |
|------------------------------------------|
| "cache_l2": 8388608,                     |
| "cache_l1": null,                        |
| "model": "Intel Xeon",                   |
| "instruction_set": "",                   |
| "other_description": "",                 |
| "version": "X3440",                      |
| "wendor!: "Intel!                        |
| Teecho llitt pull                        |
| "cache_lli": null,<br>"cache_lld": null, |
| "clock speed": 2530000000.0              |
| },                                       |
| "uid": "graphene-1",                     |
| "type": "node",                          |
| "architecture": {                        |
| "platform_type": "x86_64",               |
| "smt_size": 4,                           |
| "smp size": 1                            |
| ) and area in t                          |
| "main_memory": {                         |
| "ram_size": 17179869184,                 |
| "virtual_size": null                     |
| ).                                       |
| "storage_devices": [                     |
| {                                        |
| "model": "Hitachi HDS72103",             |
| "size": 298023223876.953,                |
| "driver": "ahci",                        |
| "interface": "SATA II",                  |
| "rev": "JPFO",                           |
| "device": "sda"                          |
| }                                        |
| ],                                       |
|                                          |

| Sika 4   | Chinder 4   | Queue +    | Date of actival # | Nodes # | CFU 4                      | Cores #      | Memory 4 | Shorage 1                                    | Metwork                         | • | Accelerators                                                 |
|----------|-------------|------------|-------------------|---------|----------------------------|--------------|----------|----------------------------------------------|---------------------------------|---|--------------------------------------------------------------|
| heroble  | alitu       | default.   | 2068-83-22        | 32      | 2 4 Mel Xeon Ooki 6330     | 36 cores/CPU | 112.048  | 243 08 550 + 480 08 550 + 4.8 T8 HDD         | 10-58ps + 308 Objes Orwai-Path  |   |                                                              |
| Steroble | 998         | default.   | 2058-01-35        | 4       | 4 x Mel Xeon Ooki 8130     | 35 cores/CPU | 118.048  | 483 08 550 + 2 × 1.4 TB 550 + 3 × 2.8 TB H00 | 10 Digs + 300 Objes Orwal Path  |   |                                                              |
| .te      | chelemi     | default.   | 2066-32-65        | 15      | 2. e briel Xeon E5-2630 v4 | 30 coves/CFU | 256.048  | 2 x 300 08 HOD                               | 2 x 18 Obps                     |   |                                                              |
| .Be      | chicket     | default.   | 2068-00-05        | 0       | 2 4 AND EPYC 7381          | 36 coves/CPU | 128.048  | 400 GB 55D + 2 x 4.8 TB HOD                  | 2 x 25 Obps                     |   |                                                              |
| .80      | chillet     | debuilt    | 2016-12-61        | 9       | 2 x Intel Xeen E5-2000 v4  | 14 cons/CPU  | 358 G-B  | 2 x 400 G8 55D + 2 x 4.8 TB HDD              | 2 x LE Gépe                     |   | 2 a Pevidia GTX 1098 Ti                                      |
| Ar .     | chillet     | default.   | 2018-08-01        | 8       | 2 x Intel Xaren Gold £126  | 12 coves/CPU | 152.08   | 2 x 480 08 550 + 4 x 4.8 TB H00              | 2 x 25 Obpo                     |   | (5-4): 2 a Holdin Tenin P.20<br>(7-8): 2 a Holdin Tenin V.20 |
| prodema. | granduo     | default.   | 2011-12-01        | 11      | 2 x Mel Xeon US335         | 4 cores/CPU  | 35.08    | 145 08 HDD                                   | 2 x 1.00ps + 18 00ps            |   |                                                              |
| prodemu. | petitorisce | default.   | 2013-09-30        | 15      | Z x Hiel Xeon E5 2630.     | UTZerms1     | 32.08    | 250 08 HDD                                   | 2 x 18 Obpo                     |   |                                                              |
| 309      | hercale     | default.   | 2012-00-12        | 4       | 2 x Hiel Xeen E5-2628      | Cores/CPU    | 32.08    | 3 x 2.0 18 HDD                               | 10 Okpa                         |   |                                                              |
| yon.     | rona        | dehiak     | 2006-12-61        | 23      | 2 x Intel Xeen E5-2628 v4  | Ecores/CPU   | 64 GIB   | 598 G8 HDD                                   | 10-Céps                         |   |                                                              |
| yos      | orian       | debuilt    | 2062-09-34        | 4       | 2 x Intel Xeon ES-2620     | & carea/CPU  | 22 GIB   | 598 GB HDD                                   | 10 Séps                         |   | Nvicia Toula N2075                                           |
| yos      | sagitaire   | debuilt    | 2006-87-65        | 22      | 2 4 AND Optimus 258        | 1 CarelOPU   | 2 G/R    | 73 58 HDD                                    | 1 00ps                          |   |                                                              |
| 308      | Unarus      | default.   | 2012-09-34        | 14      | 2 x Mel Xeon E5-2630       | E CORES/CPU  | 32.08    | 598 08 HDD                                   | 10-08ps                         |   |                                                              |
| lawy     | gracely     | production | 2008-01-04        | 18      | 2 x Hiel Xeon E5 2630 v3   | Lease CPU    | 128.048  | 2 x 600 08 HOD                               | 10 Dips + 55 Dips Infediend     |   |                                                              |
| tancy    | oraphique   | production | 2065-05-12        | 4       | 2 x Med Xean ES-2828 x8    | 6 CONSULTED  | 64.08    | 299 GB HDD                                   | 10-Silps + Sil Silps Infelitand |   | 1: 2 e Neide Titer Dieck<br>(2-5): 2 e Neide OTX 580         |
| iancy    | graphite    | dehuk .    | 2013-12-05        | 4       | 2 x Intel Xeen ES-2058     | Econo/CPU    | 256.048  | 2 x 300 GB 55D                               | 10 Skps + 56 Skps InfiniDand    |   | Intel Xeon Phi 7129P                                         |
| tancy    | graing      | production | 2063-04-09        | 48      | 2 x Intel Xeon ES-2058     | E CONNUCPU   | 64 GB    | 1018 HDD                                     | 1 Gbps + 56 Gbps Infrilland     |   |                                                              |
| tancy    | gnelo       | production | 2067-06-26        | 14      | 2 x Intel Xean ES-2058 v4  | 32 cores/CPU | 128.648  | 2 x 299 68 HDD                               | 10-58ps + 200 Gbps Drws-Path    |   | 2 x 79455 GTX 1080 Ti                                        |
| Sawy     | grimeni     | production | 2014-09-30        | 6       | 2 x Mel Xeon E5-2003 v3    | LOUISCEU     | 64.08    | 10 18 HED                                    | 10-Digs + 300 Objes Orwa-Path   |   | 2 a Nuidia Tesla K40M                                        |
| lany     | pinelet     | default.   | 2006-01-22        | 8       | 2 x Hiel Xeen E5 2630 v3   | Lease Child  | 128.048  | 200 08 550 + 5 x 680 58 HDD                  | 4 x 18 Obps + 56 Obps InfmBand  |   |                                                              |
|          |             |            |                   |         |                            |              |          |                                              | [1-48] 1 Okpo + 4 x 10 Okpo     |   |                                                              |

## **Reconfiguring resources**


- Operating System reconfiguration with Kadeploy:
  - Provides a Hardware-as-a-Service cloud infrastructure
  - Enable users to deploy their own software stack & get root access
  - Scalable, efficient, reliable and flexible: 200 nodes deployed in ~5 minutes
- Customize networking environment with KaVLAN
  - Protect the testbed from experiments (Grid/Cloud middlewares)
  - Avoid network pollution
  - Create custom topologies
  - By reconfiguring VLANS ~> almost no overhead





### Goal: enable users to understand what happens during their experiment

- System-level probes (usage of CPU, memory, disk, with Ganglia)
- Infrastructure-level probes: Kwapi
  - Network, power consumption
  - Captured at high frequency (≈1 Hz)
  - Live visualization
  - REST API
  - Long-term storage



## **Controlling experiments**

- Legacy way of performing experiments: shell commands
  - time-consuming
  - 🙁 error-prone
  - © details tend to be forgotten over time
- Promising solution: automation of experiments

   Executable description of experiments
   Reproducible research
- Support from the testbed: Grid'5000 RESTful API (Resource selection, reservation, deployment, monitoring)
- Several higher-level tools to help automate experiments Execo, Python-Grid5000 (Python), Ruby-cute (Ruby) https://www.grid5000.fr/w/Grid5000:Software



| Year         | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 | 2017 | 2018 |
|--------------|------|------|------|------|------|------|------|------|------|
| Active users | 564  | 553  | 592  | 514  | 528  | 458  | 573  | 600  | 564  |
| Publications | 154  | 141  | 101  | 134  | 106  | 143  | 122  | 151  | 127  |
| PhD & HDR    | 14   | 20   | 9    | 27   | 24   | 30   | 27   | 23   | 22   |
| Usage rate   | 50%  | 56%  | 58%  | 63%  | 63%  | 63%  | 55%  | 53%  | 70%  |

- 1313 active users over the last 3 years
- ► 3769 active users since 2003
- 2007 publications that benefited from Grid'5000 in our HAL collection<sup>6</sup>
  - Computer Science: 96%, Mathematics: 2.4%, Physics: 2.4%
  - Since 2015: LORIA: 23%, IRISA: 23%, LIG: 19%, LIP: 13%, LS2N: 13%, CRISTAL: 5%, LIRMM: 5%, LIP6: 3%

<sup>&</sup>lt;sup>6</sup>https://hal.archives-ouvertes.fr/GRID5000

## Organization and governance

- Director Frédéric Desprez
- Bureau (6 members: FD, LN, Christian Perez, Adrien Lebre, Laurent Lefevre, David Margery)
- Comité des responsables de sites
- Technical Director Lucas Nussbaum
  - Technical team
- Architects committee (6 members)
- Conseil de groupement
  - Inria, CNRS, RENATER, CEA, CPU, CDEFI, IMT (≈ Allistène + RENATER)
- Conseil scientifique
  - 10 members

institutional and scientific steering

technical steering

advisory and evaluation bodies

## **Technical organization**

- Distributed infrastructure, but managed by a single distributed team
  - Strong coherence and coordination between sites
- Current composition: 8.13 full-time engineers
  - Inria: 5.91 (perm: 0.86, CDD: 5.1), CNRS: 1.02 (perm: 1.02), U. Rennes: 0.6 (perm: 0.6), IMT Atlantique: 0.4 (CDD: 0.4), U. Lorraine: 0.2 (perm: 0.2)



### **Conclusions**

An advanced and established infrastructure for the *data-center* facets of Computer Science

- Large-scale, distributed
- Shared (many involved laboratories and institutions)
- Designed for reconfigurability, observability, reproducible research
- Future: SILECS
  - SILECS Infrastructure for Large-scale Experimental Computer Science
  - On the fondations of Grid'5000 and FIT (IoT-Lab, CorteXLab, R2Lab, etc.)
  - Experiment on a single infrastructure, from edge to cloud