Deploying a fault tolerant computing middleware over Grid'5000: performance analysis of CONFIIT and its integration with a quantum molecular docking

Luiz-Angelo Steffenel¹, Jean-Charles Boisson¹, Chantal Barberot², Stéphane Gérard², Éric Hénon², Christophe Jaillet¹, Olivier Flauzac¹ et Michael Krajecki¹.

¹ CReSTIC-SysCom – EA 3804

² Institut de Chimie Moléculaire de Reims – UMR CNRS 6229

UNIVERSITÉ DE REIMS CHAMPAGNE-ARDENNE

Introduction

- CONFIIT
- Case study:
 - Langford's problem
 - Quantum molecular docking

■ The FIIT class of problems ⇔

Finite number of Independent and Irregular Tasks

• For each task:

- Independency ⇔ no communications
- Unpredictable execution time
- Same algorithm

• FIIT programming:

- How to divide the problem?
- How to compute a given task?

20/04/2011

- Computation Over a Network for FIIT
- Objectives:
 - Tasks distribution over the network
 - Tasks resolution
 - Results gathering
- Characteristics:
 - Fully distributed (peer-to-peer)
 - Heterogeneous (system, hardware, architecture)
 - Easy-to-use API

20/04/2011

- Information distribution a logical ring.
- Instance to solve ⇔ task array
- State of a task:
 - New ⇔ not computed
 - Locally running
 - Remotely running
 - Terminated

	Distributed	Centralized
Fault tolerance	++	+
Task restart	Yes	Yes (If launch node runs)
Result location	On <u>any</u> nodes	Launch node
Communication cost	++	+

- Download the last CONFIIT version (jar file) <u>http://cosy.univ-reims.fr/~lsteffenel/CONFIIT</u>
- Start the initial daemon (community initialization):
 - java –cp Confiit-X.X.jar CDaemon –init –clean &
- Start the daemon on the other resources in order to join the community:
 - java –cp Confiit-X.X.jar CDaemon –clean –node node-01 &
- Start the instance to solve:
 - java –cp pathToJar/Confiit-X.X.jar MyApplication
 J.-C. Boisson G5K Workshop 2011

Case study 1: Langford's problem

→ Grid use for solving large problem instances.

→ Impact of node placement in the computation.

Largest instances up to now:

2

L(2,19) solved in 2.5 years (1999)

3

L(2,20) solved in one week (2002)

L(2,3):

3

2

1

Largest instances up to now:

2

L(2,19) solved in 2.5 years (1999)

3

- L(2,20) solved in one week (2002)
- L(2,23) solved in 4 days with 63 machines (2004)

1

2

Equivalent to ~320 days of sequential computation

L(2,3):

3

Largest instances up to now:

2

- L(2,19) solved in 2.5 years (1999)
- L(2,20) solved in one week (2002)
- L(2,23) solved in 4 days with 63 machines (2004)
 - Equivalent to ~320 days of sequential computation
- L(2,24) solved in 94 days in a variable set of machines (2005)

1

2

(about 850 days of sequential computation)

3

20/04/2011

L(2,3):

J.-C. Boisson G5K Workshop 2011

3

• Largest instances up to now:

2

- L(2,19) solved in 2.5 years (1999)
- L(2,20) solved in one week (2002)
- SYSCOM team

3

- L(2,23) solved in 4 days with 63 machines (2004)
 - Equivalent to ~320 days of sequential computation
- L(2,24) solved in 94 days in a variable set of machines (2005)

1

2

(about 850 days of sequential computation)

3

L(2,3):

Case study 1: Langford's problem

- Ratio between level **n** and **n-1** \approx 5x
- There is no solution for n=25 and n=26
- So for n=27...
 - 850 days of seq. computing₂₄ x 5_{25} x 5_{26} x 5_{27} =
 - 106 250 days (291 years)
- Only way: distributed computing (grid, cloud...)
 - More than 3 months in a grid with 1000 nodes
 - In a so long run, we must be sure that the node's placement doesn't affect the overall performance

- Interfacing with CONFIIT:
 - Stand-alone application designed to work with CONFIIT.
 - Distributed programming mode.
 - Two types of topology:
 - Geographical placement
 - Unordered placement

<u>Geographical placement</u> Token circulation ++ Fault tolerance + <u>Unordered placement</u> Token circulation + Fault tolerance ++

Case study 1: Langford L(2,20)

Langford L(2,20)

Langford L(2,20)

1 cluster (240 cores) x 3 clusters (80 cores each)

Langford L(2,20)

20/04/2011

Case study 2: Quantum molecular docking (preliminary work)

→ Extreme resource consuming problem.

→ Easy deployment for a non-specialist end user

Case study 2: UNIVERSITÉ CHAMPAGNE-ARDENNE CHAMPAGNE-ARDENNE

Docking

Macromolecule

Case study 2: UNIVERSITÉ DE REIMS CHAMPAGNE-ARDENNE

- The complexity of the problem relies on:
 - The flexibility of the molecules:
 - The both are rigid ⇔ rigid docking
 - The ligand is flexible ⇔ semi-flexible docking
 - The both are flexible ⇔ full flexible docking
 - The type of energy evaluation:
 - Empirical force fields
 - Quantum methods:
 - Semi-empirical
 - Ab initio

- The complexity of the problem relies on:
 - The flexibility of the molecules:
 - → impact on the search space size
 - The type of energy evaluation
 - ➔ impact on the evaluation cost of a solution

20/04/2011

- Current approaches:
 - Semi-flexible docking with empirical force field
 - Pros:
 - The energy evaluation is very quick
 - Using metaheuristics allows to gain good quality solutions without exploring the whole search space.
 - Cons:
 - The force field is calibrated for specific molecular families
 - \rightarrow A lot of system cannot be analyzed with these methods.

- Our approach:
 - rigid docking with a quantum semi-empirical method
 - Pros:
 - All the systems can be studied.
 - Using metaheuristics allows to gain good quality solutions without exploring the whole search space.
 - Cons:
 - The energy evaluation is (very)ⁿ time expensive.
 - 1000 atom system (only one solution)
 - \Leftrightarrow more than 20 min on a standard processor

- Interfacing with CONFIIT:
 - CONFIIT manages the evaluation of the solutions.
 - The main algorithm does not need to know how the solutions are evaluated.
 - Centralized programming mode.
 - No pre-defined node placement.

- System of interest:
 - PDE4: phosphodiesterase enzyme of type 4
 - PDE4 + cAMP (cyclic adenosine monophosphate)
 AMP which has inflammatory effects
 - Stop this reaction (inhibits it) allows to relax the muscles of the breath ⇔ drug for healing:
 - Asthma
 - COPD (chronic obstructive pulmonary disease)

- System of interest:
 - Replace the cAMP in the PDE4.
 - Existing inhibitors (4):
 - Good impact on the diseases
 - A lot of secondary effects
 - Aim of the chemists ⇔ find a new inhibitor
 - With qualities equivalent to others existing inhibitors.
 - Without their drawbacks

- First test ⇔ approach validation
 - The main algorithm is a genetic algorithm.
 - One level of paralleling a pool of solutions is evaluated by a set of cores.
 - 10 runs with a population of 32 solutions during 500 generations:

→ 3 days of computation with high performance processors (Xeon® CPU X5650 2,67GHz) on the ROMEO platform for <u>each</u> run.

- Second test ⇔ scalability test
 - Deploying the docking with a large population (>500).
 - Use of Reims Grid'5000 node:
 - 44 nodes of 24 AMD Opteron[™] Processor 265
 ⇔ 1056 computational cores
 - Stopping criterion ⇔ a number of iterations without improvement (with a maximum of 10 000 iterations).

• One week of computation \rightarrow valid results.

- First test:
 - Valid results.
 - Too restrictive for a real docking study.
 - Too long.
- Second test:
 - Valid results.
 - Slower execution due to the master node: genetic operators + I/O for backup between the evaluations.

- Real tests:
 - Bigger number of solutions ...
 - ... with two levels of paralleling:
 - Population-level: a population of solutions is distributed on clusters of computational resources (geographical distant or not).
 - Solution-level: a solution is evaluated by a set of computational resources.

- Real tests:
 - Bigger number of solutions ...
 - ... with two levels of paralleling:
 - Population-level: a population of solutions is distributed on clusters of computational resources (geographical distant or not).
 - Solution-level: a solution is evaluated by a set of computational resources.

Large scale grid computing required

- Next tests: why using Grid'5000 ?
 - To evaluate the dimensional aspects between the two levels of paralleling:
 - Size of the clusters
 - Communication costs
 - To verify the good interaction between the two levels of FIIT instances to solve.
 - To validate an auto-adaptive approach for an efficient charge-balancing according to the available architectures.

20/04/2011

• CONFIIT is a working middleware:

- Fully distributed, robust.
- Heterogeneous (system, hardware, architecture);
- With a rich programming API.
- That can be used for real-life complex problems.
- Current improvements:
 - communication between tasks.
 - security / confidentiality.

CONFIIT current version: http://cosy.univ-reims.fr/~lsteffenel/CONFIIT

20/04/2011