
1/35

Execo tutorial
Grid’5000 school, Lyon, June 2014

Matthieu Imbert Laurent Pouilloux

INRIA/LIP ENS-Lyon

05/06/2014



2/35

1 introduction

2 execo, core module

3 execo g5k, Grid’5000 interface

4 execo engine, experiment engine

5 examples

6 conclusion



3/35

1 introduction

2 execo, core module

3 execo g5k, Grid’5000 interface

4 execo engine, experiment engine

5 examples

6 conclusion



4/35

Context overview

I Conduct a computer sciences experiment, or perform a system
or admin task (e.g. install / configure / start / stop some
software)

I On local or remote hosts

I Control complex workflows of system operations



5/35

Some possible solutions

Interactive local or ssh sessions

I painful

I error prone

I not reproducible

Shell scripting

I limited syntax

I poor unix process control, especially through ssh

I difficult asynchronous management



6/35

The Execo solution

A python API for controlling local or remote unix processes, for
scripting workflows of operations on distributed systems.

I easy, fast, and intuitive to develop. You directly write your
script the same way you think about it.

I fine grained control, e.g. easy to get simultaneously stdout,
stderr, exit code.

I asynchronous, e.g. start process A, start process B, wait B,
kill A

I optimized, scalable: transparently scales to the order of
thousands of parallel remote processes

I powerful log system:
I convenient defaults giving the right amount of output
I live or post-mortem analysis of complex distributed workflows

I efficient file transfers



7/35

Execo characteristics

unix processes

Based on forking or ssh-like tools for executing processes. Can use
taktuk for scaling up.

file transfers

Can use parallel scp, taktuk, or an efficient chained broadcast.

Grid’5000 interaction

A python module offers an API to interact with Grid’5000 services



8/35

1 introduction

2 execo, core module

3 execo g5k, Grid’5000 interface

4 execo engine, experiment engine

5 examples

6 conclusion



9/35

module execo

I Execo kernel:
I a thread handles the lifecycle and outputs of all handled

operating system processes
I multiplexed I/O: poll on linux, select on osx Ü very efficient

I allows client code to control process asynchronously: start a
process, wait for it, kill it

I lifecycle and I/O of processes handled with callbacks. Default
callbacks:

I collect stdout / stderr
I handle process death: exit code, duration

I default callbacks sufficient most of the time. But may supply
custom callbacks if needed

This is one of the main strengths of Execo which distinguishes it
from other libraries, and which allows easily coding workflows that
would be impossible or difficult to code with other libraries.



10/35

Process

Hi level class hierarchy for local processes Process or remote
processes SshProcess

I control: start, wait, kill

I state: error, exit code

I I/O: stdout, stderr

I etc.



11/35

SshProcess

SshProcess inherits from Process. It targets a Host:

I hostname or address

I user (optional)

I port (optional)

I keyfile (optional)

All remote connections also use default ConnectionParams or
user-supplied one:

I ssh / scp executables

I ssh / scp options

I address rewriting hook (eg. handy for going through an ssh
alias)

I etc.



12/35

Logging

I standard python logger
I default setup ideal for most situations:

I quiet
I except: warning (with detailed infos) for all processes with an

error (start error, non zero exit code)
I can explicitly tell some processes to not log warnings on such

conditions

I eases post-mortem analysis of problems in long experience logs



13/35

Process states

I carefully designed process state system

I most of the time: Process.ok

I means: process running ∨ (process finished ∧ ¬error ∧
¬timeout ∧ exit code = 0)

I can explicitly tell some processes to be considered “ok” even
if exit code 6= 0

I can access each detailed state attributes as well as process
start date or end date



14/35

Actions

I set of parallel remote processes to a list of hosts
I same as process:

I control: start, wait, kill
I state: ok, error, exit code, start date, end date

I access to individual processes (stdout, stderr)

I as for remote processes: connect to list of Host, using default
or specific ConnectionParams



15/35

Taktuk transparent usage

I taktuk can be used instead of using parallel ssh

I same Action interface Ü same code can switch to taktuk
when facing scalability issues

I can use a “taktuk frontend”: a host to connect to with ssh,
on which to run taktuk Ü allow for example running taktuk
inside g5k, controlled by outside

A factory can be used to centrally control what kind of action to
instantiate: taktuk or classic parallel ssh



16/35

Put/Get

I parallel file copies to / from nodes

I there are versions using taktuk (but with limitations)

I ChainPut: efficient chained broadcast for copying large data
to several remote hosts.



17/35

Action workflows

Action
ParallelActions

Action Action

SequentialActions

Action

Action

Barrier: wait for any or wait for all

I workflows with ParallelActions, SequentialActions

I wait any actions, wait multiple actions



18/35

Substitutions

A very convenient syntax to express variations in the command line
executed in parallel on the set of remote hosts of an Action.

I all occurrences of the literal string {{{host}}} are
substituted by the address of the connected Host.

I all occurrences of {{<expression>}} are substituted in the
following way: <expression> must be a python expression,
which will be evaluated in the context (globals and locals) of
the Action declaration, and which must return a sequence.
{{<expression>}} is replaced for all individual remote host
by <expression>[index % len(<expression>)].



19/35

1 introduction

2 execo, core module

3 execo g5k, Grid’5000 interface

4 execo engine, experiment engine

5 examples

6 conclusion



20/35

Grid’5000

An infrastructure distributed in 9 sites around France, for research
in large-scale parallel and distributed systems.
Powerful, but

I complex to use

I lots of failure modes

I continuously evolving

I long learning curve. knowledge of good practices only comes
with experience (and sometimes oral tradition)



21/35

module execo g5k

I oar / oargrid

I kadeploy

I Grid’5000 API

I planning, charter, funk



22/35

oar

Submission and deletion

I OarSubmission(resources, walltime, job type, ...)

I oarsub([OarSubmission(...), frontend)])

I oardel([(job id1, frontend1), (job id2,

frontend2)])

Job information
I get oar job info, get oar job nodes

I wait oar job start, get current oar jobs

Network information
I get oar job subnets

I get oar job kavlan



23/35

oargrid

Submission and deletion

oargridsub, oargriddel

Job information

get current oargrid jobs, get oargrid job info,
get oargrid job oar jobs, get oargrid job nodes

Flow control

wait oargrid job start



24/35

kadeploy

deploy

I possible to not redeploy already deployed nodes

I able to retry deployments several times if not enough resources

I user-provided callback for deciding if enough resources (even
with complex topology)

I supports custom checks to detect if node deployed



25/35

Grid’5000 API

Specific functions

get g5k sites, get g5k clusters, get g5k hosts,
get site clusters, get cluster hosts, get cluster site,
get host cluster, get host site, group hosts

Gathering resources information

get host attributes, get cluster attributes,
get site attributes, get resource attributes



26/35

planning, charter

I Retrieve the schedule planning of hosts / vlans, from a
Grid’5000 site

I finds time slots allowing scheduling of jobs with a given need
of resources and wall-time

I 3 search modes (searching on a time range, 1 month by
default)

I date: find how much resources are available at a given date
for a given wall-time

I free: find the first time-slot the given resources are available
for a given wall-time

I max: find the time-slot where the maximum number of
resources are available for a given wall-time

I charter: for a given day, get the remaining time available per
cluster for submitting jobs during work hours.



27/35

funk

I Based on modules planning and charter, this is a command
line tool allowing manually finding time-slots with sufficient
resources for reserving nodes.

I already installed on Grid’5000
I alternative to disco



28/35

1 introduction

2 execo, core module

3 execo g5k, Grid’5000 interface

4 execo engine, experiment engine

5 examples

6 conclusion



29/35

module execo engine

class Engine

I a class hierarchy implementing basic experiment life cycle

I intended to allow providing specific custom experiment engine
that can be sub-classed and specialized (e.g. vm5k,
g5k cluster engine)

Parameter sweeping

I to explore the combinations of several parameters: a syntax
allows expressing these parameters and generate the list of all
parameters combinations (the Cartesian product)

I class ParamSweeper provides a check-pointed, thread-safe,
process-safe iterator over the parameter combinations,
allowing to track the progress of an experiment.



30/35

Example of a generic experiment engine

g5k cluster engine:

I a reusable Execo engine, automatizing the workflow of
submitting jobs in parallel to Grid’5000 clusters / sites

I well suited for bag-of-task kind of jobs, where the cluster is
one of the experiment parameter, e.g. benching flops,
benching storage, network, etc.



31/35

1 introduction

2 execo, core module

3 execo g5k, Grid’5000 interface

4 execo engine, experiment engine

5 examples

6 conclusion



32/35

openstack deployment on Grid’5000
courtesy of Guillaume Verger

I a single Execo script, automatizing the whole deployment of
openstack, as described here:
https://www.grid5000.fr/mediawiki/index.php/

Deploying_OpenStack_using_KaVLAN

I adds several options for controlling the deployment topology

I supports deploying DIET on top of openstack

https://www.grid5000.fr/mediawiki/index.php/Deploying_OpenStack_using_KaVLAN
https://www.grid5000.fr/mediawiki/index.php/Deploying_OpenStack_using_KaVLAN


33/35

vm5k

basic usage

a single script, automatizing the
deployment of a large number
of virtual machines on Grid’5000,
providing several options to con-
trol physical hosts and virtual ma-
chines

advanced usage

a reusable Execo engine that performs a user defined experiment on
these virtual machines, e.g. live migration, multi-core performance.



34/35

Building a model for VM live migration

I Question:
Impact of memory update
intensity, network bandwith,
collocated VMs

I Methodology:

I Generating parameter
combinations (bw,
number of VMs, memory
update)

I Reserving 2 PMs and a
private network

I Launch VMs and the
memory update program

I Migrate VMs from a PM
to the other one (10
times)

T. Hirofuchi, A. Lèbre, L. Pouilloux: ”Adding a Live Migration Model Into SimGrid, One More Step Toward the Sim-
ulation of Infrastructure-as-a-Service Concerns” 5th IEEE International Conference on Cloud Computing Technology
and Science 2013



35/35

Conclusion

Execo strong points:

I pragmatic approach: rapid experiment development

I efficient, user-friendly (e.g. logs, asynchronous process
control, transparent local or remote unix processes, efficient
file broadcasting, scalable, thanks to taktuk, etc.)

I flexible: no experiment model imposed

I brings the power of a general purpose language into the world
of experiment prototyping and conducting

I may also use it for admin tasks, unit testing

Matthieu Imbert, Laurent Pouilloux, Jonathan Rouzaud-Cornabas, Adrien Lèbre,
Takahiro Hirofuchi “Using the EXECO toolbox to perform automatic and repro-
ducible cloud experiments” 1st International Workshop on UsiNg and building
ClOud Testbeds UNICO, collocated with IEEE CloudCom 2013 2013


	introduction
	execo, core module
	execo_g5k, Grid'5000 interface
	execo_engine, experiment engine
	examples
	conclusion

