

Reza Akbarinia Zenith Team, INRIA & LIRMM

Management & Analysis of Big Data in
Zenith Team

Reza Akbarinia

Zenith Team,
INRIA & LIRMM

Reza Akbarinia Zenith Team, INRIA & LIRMM

Outline

● Introduction to MapReduce
● Dealing with Data Skew in Big Data Processing
● Data Partitioning for MapReduce
● Frequent Sequence Mining
● Frequent Itemset Mining
● Conclusion

Reza Akbarinia Zenith Team, INRIA & LIRMM

MapReduce : A Framework for Big Data
Processing

Introduced by Google to support parallel processing of highly
distributable problems, e.g. PageRank

● Hadoop: an open source (Apache) distribution of MR
● Used by many companies for Big Data processing, e.g. Yahoo,

Facebook

Programming principle:
● Map step: The input data is divided to smaller split, and each split

is processed by a map worker to produce a set of intermediate
key-values

Reduce step: all values of each key are transferred to one reduce
worker where a reduce function is applied on them to produce the
final results

Shuffle: process of sorting, grouping and transferring intermediate
key-values from map to reduce workers.

Reza Akbarinia Zenith Team, INRIA & LIRMM

MapReduce Architecture

Reza Akbarinia Zenith Team, INRIA & LIRMM

Dealing With Data Skew in
MapReduce

Problem:
● Poor performance in case of skew in reduce
phase

● In some applications, a high percentage of
values is processed by one reducer

● E.g. Top-k, Skyline, some Aggregate queries

Reza Akbarinia Zenith Team, INRIA & LIRMM

Our Solution: FP-Hadoop

● Main idea: an intermediate reduce (IR) phase
– An IR function (e.g. combiner) is executed over

blocks of intermediate values

– Using all workers of the system

● Features of IR phase
– Collaborative reducing of each key

– Hierarchical execution plans

– Optimized scheduling of distributed blocks
● In contrast to combinerf unction, the IR function is

applied over distributed intermediate blocks

Reza Akbarinia Zenith Team, INRIA & LIRMM

Data Flow in FP-Hadoop

Reza Akbarinia Zenith Team, INRIA & LIRMM

Performance Evaluation
● Test platform: Grid5000

● FP-Hadoop : up to 10x faster than Hadoop (MR) in
reduce time and 5x in total execution time

Reza Akbarinia Zenith Team, INRIA & LIRMM

Data Partitioning for Reducing Data Transfer in
MapReduce

● The shuffle phase may involve large data transfers
– Because each mapper sends high data volumes to each reducer

● Result: high response time of some jobs because of slow shuffle

● Ideal case:
– Values of each key are produced at one map worker, and are reduced by the

same worker

Map0

Map1

Map2

Map3

Reduce
1

Reduce
0

Map0

Map1

Map2

Map3

Reduce
1

Reduce
0

Worker 2

Worker 1

Normal situation Ideal situation

Reza Akbarinia Zenith Team, INRIA & LIRMM

Our Contribution
MR-Part: A new approach for minimizing data transfers in MapReduce

 Implemented on top of Hadoop

Reza Akbarinia Zenith Team, INRIA & LIRMM

Experiments

Environment
• Grid5000

Comparison
• Native Hadoop (NAT)

• Hadoop + reduce locality-aware scheduling (RLS)

• MR-Part (MRP)

Benchmark
• TPC-H, MapReduce version

Parameters
• Data size, cluster size, bandwidth

Metrics
• Transferred data

• Latency (response time)

Reza Akbarinia Zenith Team, INRIA & LIRMM

Performance Evaluation

Percentage of transferred data

Reza Akbarinia Zenith Team, INRIA & LIRMM

Frequent Sequences: TeraBytes
of data

- Bull’s clusters (e.g. CURIE) need careful management and real-time
monitoring.

- Clusters’ nodes send lots of messages in log files that:
- Cannot be explored by humans (hundreds of Tera-bytes)

- Zenith is designing massively distributed data mining methods that
scale for analyzing this huge data

- Patterns discovered from these logs will feed rule bases that allow
monitoring the clusters and trigger alarm in case of possible anomaly.

ongoing work with Bull

Reza Akbarinia Zenith Team, INRIA & LIRMM

Frequent Sequences: TeraBytes
of data

Message logs (hundreds of Tera-bytes)
47 2013 Jun 30 03:29:07 kay0 daemon info named error 1#53
47 2013 Jun 30 03:29:07 kay0 daemon info named error 2#53
48 2013 Jun 30 03:29:07 kay0 daemon info named error 1#53
49 2013 Jun 30 03:29:09 kay0 daemon info named error 5#53
50 2013 Jun 30 03:29:09 kay0 daemon info named error 5#53
50 2013 Jun 30 03:29:09 kay475 syslog err syslog-ng I/O
50 2013 Jun 30 03:29:09 kay475 syslog notice syslog-ng Error
51 2013 Jun 30 03:29:09 kay475 syslog notice syslog-ng Suspending
52 2013 Jun 30 03:29:10 kay0 daemon info named error 5#53
53 2013 Jun 30 03:29:10 kay0 daemon info named error 5#53
53 2013 Jun 30 03:29:10 kay0 daemon info named error 5#53
53 2013 Jun 30 03:29:11 kay0 daemon info named error f#53

Patterns

…
Daemon error + syslog error -> Suspending
User notice + IO warning -> syslog error
…

Rules

Monitoring

ongoing work with
Bull

Reza Akbarinia Zenith Team, INRIA & LIRMM

Data Partitioning for Frequent Itemset
Mining

● Improving frequent itemset mining algorithms based
on input data partitioning

• Mappers of MapReduce work on partitions

 A new data partitioning technique: Item based data
partitioning
Objective: Mining several Terabytes of data

(Clouweb)

ongoing work

Reza Akbarinia Zenith Team, INRIA & LIRMM

Hadoop_g5k: a Tool for Easy Hadoop Deployment
in Grid5000

Overview
• Initiated by Miguel Liroz (research engineer in Zenith)

• Scripts and APIs to deploy Hadoop applications in G5K

• Based on execo library

• Documentation available in G5K wiki, and sources in GitHub

Features

● Manages whole life-cycle of Hadoop clusters

● Supports several versions of Hadoop and hides configuration details

● Automatic configuration based on best practices

– Topology, number of slots, memory per task, etc.

Reza Akbarinia Zenith Team, INRIA & LIRMM

Conclusion

Big Data Processing and Analysis

● Dealing with skew in big data processing

● Data partitioning for reducing network traffic in
MapReduce framework

● Error pattern detection in Bull super-computer logst

● Large scale frequent itemset mining

To evaluate all these solutions

● We use Grid5000

● Requirement: more storage capacity

Reza Akbarinia Zenith Team, INRIA & LIRMM

Questions ?

Web Site: search “Zenith Team” in Google
Email: Reza.Akbarinia@inria.fr

mailto:Reza.Akbarinia@inria.fr

Reza Akbarinia Zenith Team, INRIA & LIRMM

hg5k

An example
• Creation + installation + initialization/start

• Job execution

• Destruction

•

hg5k --create $OAR_FILE_NODES
hg5k --bootstrap $LIB_HOME/hadoop-1.2.1.tar.gz
hg5k --initialize –start
hg5k --jarjob $LIB_HOME/hadoop-test-1.2.1.jar mrbench
hg5k --delete

Reza Akbarinia Zenith Team, INRIA & LIRMM

hadoop_engine

Features
• Test automatization for Hadoop based experiments

• Optimizes dataset creation and/or deployment

• Generates ds/xp configuration + statistics for all combinations

• (to appear) Automatic generation of figures from results

Example (from wiki)

•

[test_parameters]
test.summary_file = ./test/summary.csv
test.ds_summary_file = ./test/ds-summary.csv
test.stats_path = ./test/stats

[ds_parameters]
ds.class = hadoop_g5k.dataset.StaticDataset
ds.class.local_path = datasets/ds1
ds.dest = ${data_dir}
ds.size = 1073741824, 2147483648 # 1 | 2 GB

[xp_parameters]
io.sort.factor = 10, 100
xp.combiner = true, false
xp.job = program.jar || ${xp.combiner} other_job_options ${xp.input} ${xp.output}

Where results are stored

Dataset configuration

Experiments configuration

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Experiments
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Overview
	Slide 17
	Slide 18
	hg5k
	hadoop_engine

