

Big Data Management in the Clouds and HPC Systems

Hemera Final Evaluation Paris 17th December 2014

Shadi Ibrahim Shadi.ibrahim@inria.fr

Source: CNRS Magazine 2013

Source: CNRS Magazine 2013

Source: CNRS Magazine 2013

Ínría

KerData's Core Research Challenges

Applications

- Massive data analysis: clouds (e.g. MapReduce)
- Post-Petascale HPC simulations: supercomputers

Focus 1: Scalable big data management on IaaS and PaaS clouds

 Challenge: understand how to reconcile performance, scalability, security and quality of service according to the requirements of data-intensive applications

Focus 2: Scalable big data management on Post-Petascale HPC systems

Challenge: go beyond the limitations of current file-based approaches

Focus 1:

Scalable Big Data Management in IaaS and Paas Clouds

Scalable Map-Reduce Processing

- ANR Project Map-Reduce (ARPEGE, 2010-2014)
- Partners: Inria (teams : KerData leader, AVALON, Grand Large), Argonne National Lab, UIUC, JLPC, IBM, IBCP
 - Goal: High-performance Map-Reduce processing through concurrency-optimized data processing

URL: mapreduce.inria.fr

Some results

- Versioning-based concurrency management for increased data throughput (BlobSeer approach)
- Efficient intermediate data storage in pipelines
- Substantial improvements with respect to Hadoop
- Application to efficient VM deployment
- Intensive, long-run experiments done on Grid'5000
 - Up to 300 nodes/500 cores
 - Plans: joint deployment G5K+FutureGrid (USA)
- Papers: JPDC, Concurrency and Computation Practice and Experience, ACM HPDC 2011 (AR:12.9%), ACM HPDC 2012, IEEE/ ACM CCGRID 2012, 2013, 2014, Euro-Par 2012, IEEE IPDPS 2013

BlobSeer

Impact: Transfer to Commercial Clouds The A-Brain Microsoft Research – Inria Project

- Approach
 - 1. Preliminary experiments on Grid'5000^{Brain image}
 - 2. Apply the approach to MS Azure clouds
- Partners
 - KerData, PARIETAL (Inria)
 - Microsoft ATL Europe

q~10⁵⁻⁶

Y

- Anatomical MRI
- Functional MRI
- Diffusion MRI

p~10⁶

X

- DNA array (SNP/CNV)
- gene expression data
- others...

Genetic data

N~2000

- TomusBlobs software (based on BlobSeer)
- Gain / Blobs Azure : 45%
- Scalability: 1000 cores
- Demo available!

http://www.irisa.fr/kerdata/doku.php?id=abrain

Exposing Data Locality in MapReduce

- Data locality is crucial for Hadoop's performance
- Map scheduler ignores the state of the replication
 - e.g., 58% of Facebook's jobs achieve only 5% node locality and 59% rack locality (Eurosys 2010)
- Maestro: replica-aware map scheduling
- 35% performance improvement

"Maestro: Replica-aware map scheduling for mapreduce" S Ibrahim, H Jin, L Lu, B He, G Antoniu, S Wu. CCGrid 2012

Energy-Efficient Big Data Processing

Why Energy efficient Hadoop?

THE engine for Big Data processing in data-centers

Power bills become a substantial part of the total cost of ownership (TCO) of data-centers

It is essential to explore and optimize the energy efficiency when running Big Data application in Hadoop

Investigate the Impacts of CPU-Frequencies Scaling on Power Efficiency in Hadoop

Diversity of MapReduce applications

Multiple phases of MapReduce application

There is a significant potential of energy saving by scaling down the CPU frequency when peak CPU is not needed

Investigate the Impacts of CPU-Frequencies Scaling on Power Efficiency in Hadoop

We observe that different DVFS settings are not only sub-optimal for different MapReduce applications but also sub-optimal for different stages of the MapReduce application

Build dynamic frequency tuning tool specifically tailored to match MapReduce application types and execution stages

"Towards Efficient Power Management in MapReduce: Investigation of CPU-Frequencies Scaling on Power Efficiency in Hadoop", S. Ibrahim et al, ARMS-CC 2014.

Consistency Management in the Cloud

Replication has become an essential feature in storage system and is extensively leveraged in the cloud

- Fast access
- Enhanced performance
- High availability

How to ensure a consistent state of all the replicas?

Strong consistency
High latency
Fresh reads

Eventual consistency
Low latency
Stale reads
scalable

Expose the tight relation between Consistency and

- Performance
- Monetary Cost
- Power Consumption

Expose the tight relation between Consistency and

- Performance
- Monetary Cost
- Power Consumption

facebook

Bismar: Cost-Efficient Consistency Management for the Cloud

Bismar reduces the monetary cost by 31% while resulting in only 3.5% of stale data reads

"Harmony: Towards automated self-adaptive consistency in cloud storage" HE Chihoub, S Ibrahim, G Antoniu, MS Perez. CLUSTER 2012

"Consistency in the cloud: When money does matter!" HE Chihoub, S Ibrahim, G Antoniu, MS Pérez.CCGrid 2013

Energy vs Consistency

Exploring the tight relationship of Consistency vs Energy

Coefficient of Variation: high variation with low consistency levels

We observe that there are three main factors contribute to energy consumption in Cassandra cluster:

- Consistency Models
- Workload access patterns
- Degree of concurrency

Eventual Consistency introduces usage variability between storage nodes

Adaptive Configuration of the Storage Cluster

Focus 2:

- Joint Laboratory on Extreme Scale Computing
 - INRIA
 - University of Illinois at Urbana Champaign (UIUC)
 - Argonne National Laboratory (ANL)
 - Barcelona Supercomputing Center (BSC)

Scalable big data Management on Post-Petascale HPC systems

The need for Scalable, Smart, yet Efficient I/O Management

Tomorrow's supercomputer

- Millions of cores
- Increasing gap between compute and I/O performance

Efficient I/O Using Dedicated Cores

• Damaris: Dedicated Adaptable Middleware for Application Resources Inline Steering

• Main idea:

 Dedicate cores in each SMP node for data management

"Damaris: how to efficiently leverage multicore parallelism to achieve scalable, jitter-free i/o" M Dorier, G Antoniu, F Cappello, M Snir, L Orf. CLUSTER 2012

Towards smart in-situ Visualization

- Connect visualization software to simulation
- Perform visualization when the simulation runs
- •Perform "smart" visualization, i.e. reduce image resolution when needed

http://damaris.gforge.inria.fr/

Energy Efficient I/O Management

Power bills become a substantial part of the total cost of ownership (TCO) of supercomputers

A typical supercomputer of thousands of cores consumes several megawatt of power

Performance has long been the major focus of the HPC community

 No.1 supercomputer, Tianhe-2 : performance of 33.8 PFLOPS but with a 24 MW power consumption

Energy Efficient I/O Management

Power bills become a substantial part of the total cost of ownership (TCO) of supercomputers

A typical supercomputer of thousands of cores consumes several megawatt of power

Performance has long been the major focus of the HPC community

 No.1 supercomputer, Tianhe-2 : performance of 33.8 PFLOPS but with a 24 MW power consumption

Energy will even increase as we reach the era of Exascale systems.

Energy Efficient I/O Management

Evaluate the energy consumption of different I/O approaches based on dedicated cores, or dedicated nodes

Three factors at least contribute to such variations:

- The adopted I/O approach
- The output frequency
- The architecture of the system on which we run the HPC application

"A performance and energy analysis of I/O management approaches for exascale systems" O Yildiz, M Dorier, S Ibrahim, G Antoniu. DIDC 2014

Mitigating I/O Interference

CALCioM: Cross-Application Layer for Coordinated I/O Management

- Goal:
 - Make applications communicate their I/O behavior to one another
 - Make them coordinate to avoid interfering
 - Choose best coordination strategy dynamically
- Experiments with Grid'5000 and Surveyor (BlueGene/P, ANL)

"Calciom: Mitigating i/o interference in hpc systems through cross-application coordination." M Dorier, G Antoniu, R Ross, D Kimpe, S Ibrahim. IPDPS 2014

Predicting I/O Patterns

Goal: predict the spatial and temporal I/O patterns Omnisc'IO: use context-free grammars

Predictions:

- Where, when, and how much
- At run time
- With negligible overhead
- And negligible memory footprint

• Results:

- With CM1, Nek5000, GTC and LAMMPS
- On Grid'5000
 "Omnisc'IO: a grammar-based approach to spatial and temporal I/O patterns prediction"
 M Dorier, S Ibrahim, G Antoniu, R Ross SC'14

Thank you!

Shadi Ibrahim

INRIA research Scientist KerData Team Shadi.ibrahim@inria.fr

