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General Context

Combinatorial Optimization

= Applications: Logistics,
Supply Chain,
Telecommunications,
Clouds, Green-IT, etc.

= NP-hard problems

= Resolution methods are
computing intensive

Computing Resources

Aggregated resources:
clusters, grids, clouds, etc.

New architectures: multi-
cores, many-cores, etc.

Impressive computing
capability (in theory)

General objective

= Solve Combinatorial Optimization Problems
efficiently on large scale computing resources




Branch-and-Bound

Branching: divide a problem to several sub-problems

Bounding: calculate the estimated optimal solution

= lower/upper bound
Select: tree exploration strategy (DFS, BFS, etc)

Pruning: eliminate unpromising branches




Large Scale Heterogeneous Systems

Multi-cores GPUs Cluster(s) Grid + P2P

= Large scale systems

= Heterogeneity
= Node-level: compute power, programming paradigm, etc
= Network-level: latency, bandwidth, etc
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Irregularlty of B&B K

-> Workload of processing unit varies dynamically

-> Work stealing is a reference approach




Tree-based B&B Work Stealing

= Tree-based stealing strategy: 2 steals in parallel
= Synchronous steals to children or parent
= Asynchronous steals to remote neighbors
= Attempt to cluster idle peers

= Amount of work is adjusted distributively based on
subtree sizes

R RS2 Syn. Stealing
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Experimental Evaluation

= Application Settings
» Taillard’s Flowshop Instances (Ta20*20)
» Permutation FSP: 20 jobs on 20 machines
= Generic UTS benchmark

= Baseline Algorithms

= H-MW: Hierarchical Adaptive MW (B&B specific)
[Bendjoudi et al., FGCS’12, IEEE TC’13]

= MW: Master-Worker (B&B specific) [Mezmaz et al.,
IDPDS’07]

= RWS: (distributed) Random Work Stealing [Dinan et al.,
SC’09]




Our Approach vs RWS vs MW &
Large Scale (1000 peers)
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= MW suffers from the bottleneck when scaling the system
= RWS suffers fine-grain parallelism in large scales
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Towards heterogeneous B&B

= How to profit from current node-heterogeneous
computing platforms in B&B computations?

= Three main challenges:
= How to map B&B and hardware parallelism?

= How to deal with B&B workload irregularity?

= How to deal with huge differences in compute power?




Heterogeneous parallel B&B

= The 2MBB approach
= Multi-CPU Multi-GPU B&B

= The 3MBB approach
= Multi-Core Multi-CPU Multi-GPU B&B

= host-device parallelism in a single CPU-GPU
= Adaptive workload transfer
= Hybrid stealing in multi-core systems

= Lock-free work queues




2MBB: Experimental Results
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2MBB: Experimental Results
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= Moderate scales:
= We scale close to the linear speedup
= Baseline suffers from node-heterogeneity
= Largest scales: we are still far from the linear speedup



3MBB: Experimental Results
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Heterogeneous links 18

= Steal requests through WAN links are expensive




State-of-the-art approaches 15

Algorithms

[J. SC] ACRS 4 @

[PPoPP] CRS ®
[Europar] PWS @
[J. ACM] RWS ()

> Platforms
Platform Generic
dependent



Link Heterogeneous Work Stealing

Local Steals: based on a preference neighbors and a non-
uniform adaptive probability

Learn local neighbors and remote neighbors at runtime
= K-Means clustering to return 2 sets of neighbors

Remote steals: controlled by a timing window

» If the window expires and no work found remote steal
is enabled

Window size controlled adaptively (additive Increase
Multiplicative Decrease)




Performance Assessment

= Experimentation methodology: Emulation
» Deploy Distem on top of Grid’5000
= Network configuration is artificially modified by

Distem
Distem

= Broad range of network configurations

= Flat: n-level communication hierarchy
» Latency between peers

= Grid: two-level communication hierarchy
» Latency between clusters
= Number of clusters




Flat Configuration Distem
B&B UTS
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= WS improves up to 40%



Grid Configuration Distem

B&B
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= PWS and ACRS performance depends on application

= WS is platform and application-independent




. 24
Conclusion 2

= Design and experimental evaluation of new parallel
B&B algorithms for large scale heterogeneous
environments

= In the future
= |nvestigate more complex compute systems

= |nvestigate more complex optimization problems and
other algorithmic paradigms




Thank You !

Questions’

Combinatorial Optimization Work distribution .
<;> Computational resources
Large scale instances Overlay Mapping

Clusters, Grids, Clouds, Virtualized environements

Load Balancing Heterogenity Faults




